Archivo | May, 2013

el circuito electrico

12 May

 

circuitos electricos

1.- El circuito eléctrico elemental.

El circuito eléctrico es el recorrido preestablecido por por el que se desplazan las cargas eléctricas.

 

Circuito elemental

Las cargas eléctrica que constituyen una corriente eléctrica pasan de un punto que tiene mayor potencial eléctrico a otro que tiene un potencial inferior. Para mantener permanentemente esa diferencia de potencial, llamada también voltaje otensión entre los extremos de un conductor, se necesita un dispositivo llamado generador (pilas, baterías, dinamos, alternadores…) que tome las cargas que llegan a un extremo y las impulse hasta el otro. El flujo de cargas eléctricas por un conductor constituye una corriente eléctrica.

Si quieres ver los componentes de un circuito eléctrico elemental pincha aquí.

 

Se distinguen dos tipos de corrientes:

Corriente continua: Es aquella corriente en donde los electrones circulan en la misma cantidad y sentido, es decir, que fluye en una misma dirección. Su polaridad es invariable y hace que fluya una corriente de amplitud relativamente constante a través de una carga. A este tipo de corriente se le conoce como corriente continua (cc) o corriente directa (cd), y es generada por una pila o batería.

 

Este tipo de corriente es muy utilizada en los aparatos electrónicos portátiles que requieren de un voltaje relativamente pequeño. Generalmente estos aparatos no pueden tener cambios de polaridad, ya que puede acarrear daños irreversibles en el equipo.

Corriente alterna: La corriente alterna es aquella que circula durante un tiempo en un sentido y después en sentido opuesto, volviéndose a repetir el mismo proceso en forma constante. Su polaridad se invierte periódicamente, haciendo que la corriente fluya alternativamente en una dirección y luego en la otra. Se conoce en castellano por la abreviación CA y en inglés por la de AC.

 

Este tipo de corriente es la que nos llega a nuestras casas y sin ella no podríamos utilizar nuestros artefactos eléctricos y no tendríamos iluminación en nuestros hogares. Este tipo de corriente puede ser generada por un alternador o dinamo, la cual convierten energía mecánica en eléctrica.

El mecanismo que lo constituye es un elemento giratorio llamado rotor, accionado por una turbina el cual al girar en el interior de un campo magnético (masa), induce en sus terminales de salida un determinado voltaje. A este tipo de corriente se le conoce como corriente alterna (a).

Pilas y baterías:

 Las pilas y las baterías son un tipo de generadores que se utilizan como fuentes de electricidad.

Las baterías, por medio de una reacción química producen, en su terminal negativo, una gran cantidad de electrones (que tienen carga negativa) y en su terminal positivo se produce una gran ausencia de electrones (lo que causa que este terminal sea de carga positiva).

Ahora si esta batería alimenta un circuito cualquiera, hará que por éste circule una corriente de electrones que saldrán del terminal negativo de la batería, (debido a que éstos se repelen entre si y repelen también a los electrones libres que hay en el conductor de cobre), y se dirijan al terminal positivo donde hay un carencia de electrones, pasando a través del circuito al que está conectado. De esta manera se produce la corriente eléctrica.

Fuerza electromotriz de un generador:

Se denomina fuerza electromotriz (FEM) a la energía proveniente de cualquier fuente, medio o dispositivo que suministre corriente eléctrica. Para ello se necesita la existencia de una diferencia de potencial entre dos puntos o polos (uno negativo y el otro positivo) de dicha fuente, que sea capaz de bombear o impulsar las cargas eléctricas a través de un circuito cerrado.

 

A. Circuito eléctrico abierto (sin  carga o resistencia). Por tanto, no se establece la circulación de la corriente eléctrica desde la fuente de FEM (la batería en este caso). B. Circuito eléctrico cerrado, con una carga o resistencia acoplada, a través de la cual se establece la circulación de un flujo de corriente eléctrica desde el polo negativo hacia el polo positivo de la fuente de FEM o batería.

Resumiendo, un generador se caracteriza por su fuerza electromotriz, fem, que es la energía que proporciona a la unidad de carga que circula por el conductor.

Fuerza electromotriz = energía/Carga                   fem= E/Q

La unidad de fuerza electromotriz en el SI es el voltio (V): 1 voltio = 1 julio / 1 culombio

Voltímetro:

La ddp y la fem se pueden medir conectando un voltímetro entre dos puntos de un circuito o entre los terminales de un generador. El voltímetro siempre se conecta en paralelo. La escala de un voltímetro viene expresada en voltios.

Para efectuar la medida de la diferencia de potencial el voltímetro ha de colocarse en paralelo, esto es, en derivación sobre los puntos entre los que tratamos de efectuar la medida. Esto nos lleva a que el voltímetro debe poseer una resistencia interna lo más alta posible, a fin de que no produzca un consumo apreciable, lo que daría lugar a una medida errónea de la tensión. Para ello, en el caso de instrumentos basados en los efectos electromagnéticos de la corriente eléctrica, estarán dotados de bobinas de hilo muy fino y con muchas espiras, con lo que con poca intensidad de corriente a través del aparato se consigue la fuerza necesaria para el desplazamiento de la aguja indicadora.

 

En la actualidad existen dispositivos digitales que realizan la función del voltímetro presentando unas características de aislamiento bastante elevadas empleando complejos circuitos de aislamiento.

En la Figura  se puede observar la conexión de un voltímetro (V) entre los puntos de a y b de un circuito, entre los que queremos medir su diferencia de potencial.

En algunos casos, para permitir la medida de tensiones superiores a las que soportarían los devanados y órganos mecánicos del aparato o los circuitos electrónicos en el caso de los digitales, se les dota de una resistencia de elevado valor colocada en serie con el voltímetro, de forma que solo le someta a una fracción de la tensión total.

 

Conexión de un voltímetro en un circuito

Asociación de pilas:

Asociación De Pilas En Serie 

Las pilas pueden conectarse en serie cualesquiera que sean las fuerzas electromotrices y la máxima corriente que cada una de ellas pueda suministrar. Evidentemente, al conectarlas en serie, las fuerzas electromotrices se suman, así como sus resistencias internas. Se puede notar que la pila equivalente al conjunto de las n pilas resulta con una f.e.m. mayor, pero, con una resistencia interna mayor, lo cual empeora la situación en este punto. Se debe considerar, además, la corriente máxima que puede suministrar cada una de ellas. La asociación serie sólo podrá suministrar la corriente de la pila que menos corriente es capaz suministrar.

 

pilas en serie

Asociación De Pilas En Paralelo 

Al conectar pilas en paralelo debe tenerse en cuenta que sean todas de la misma f.e.m., ya que, en caso contrario, fluiría corriente de la de más f.e.m. a la de menos, disipándose potencia en forma de calor en las resistencias internas, agotándolas rápidamente. Si todas ellas son del mismo voltaje el conjunto equivale a una sola pila de la misma tensión, pero con menor resistencia interna. Además, la corriente total que puede suministrar el conjunto es la suma de las corrientes de cada una de ellas, por concurrir en un nudo. La asociación en paralelo por tanto, podrá dar más corriente que una sola pila, o, dando la misma corriente, tardará más en descargarse.

 

pilas en paralelo

Si deseas obtener más información sobre la asociación de pilas pincha aquí.

 

 

 

 

 

 

2.- Intensidad de corriente.

La intensidad del flujo de los electrones de una corriente eléctrica que circula por un circuito cerrado depende fundamentalmente de la tensión o voltaje (V) que se aplique y de la resistencia (R) en ohm que ofrezca al paso de esa corriente la carga o consumidor conectado al circuito. Si una carga ofrece poca resistencia al paso de la corriente, la cantidad de electrones que circulen por el circuito será mayor en comparación con otra carga que ofrezca mayor resistencia y obstaculice más el paso de los electrones.

Por tanto, definimos la intensidad de corriente eléctrica, I, como la cantidad de carga eléctrica que circula por una sección de un conductor en la unidad de tiempo.

Intensidad = carga/tiempo   I= Q/t

 

Analogía hidráulica. El tubo del depósito «A», al tener un diámetro reducido, ofrece más resistencia a la salida del líquido que el tubo del tanque «B», que tiene mayor diámetro. Por tanto, el caudal o cantidad de agua que sale por el tubo «B» será mayor que la que sale por el tubo «A».

Mediante la representación de una analogía hidráulica se puede entender mejor este concepto. Si tenemos dos depósitos de líquido de igual capacidad, situados a una misma altura, el caudal de salida de líquido del depósito que tiene el tubo de salida de menos diámetro será menor que el caudal que proporciona otro depósito con un tubo de salida de más ancho o diámetro, pues este último ofrece menos resistencia a la salida del líquido.

De la misma forma, una carga o consumidor que posea una resistencia de un valor alto en ohm, provocará que la circulación de los electrones se dificulte igual que lo hace el tubo de menor diámetro en la analogía hidráulica, mientras que otro consumidor con menor resistencia (caso del tubo de mayor diámetro) dejará pasar mayor cantidad de electrones. La diferencia en la cantidad de líquido que sale por los tubos de los dos tanques del ejemplo, se asemeja a la mayor o menor cantidad de electrones que pueden circular por un circuito eléctrico cuando se encuentra con la resistencia que ofrece la carga o consumidor.

La intensidad de la corriente eléctrica se designa con la letra ( I ) y su unidad de medida en el Sistema Internacional ( SI ) es el amper (llamado también “amperio”), que se identifica con la letra ( A ).


EL AMPER

De acuerdo con la Ley de Ohm, la corriente eléctrica en amper ( A ) que circula por un circuito está estrechamente relacionada con el voltaje o tensión ( V ) y la resistencia en ohm () de la carga o consumidor conectado al circuito.

Definición del amper

Un amper ( 1 A ) se define como la corriente que produce una tensión de un volt ( 1 V ), cuando se aplica a una resistencia de un ohm ( 1  ).

Un amper equivale una carga eléctrica de un coulomb por segundo ( 1C/seg ) circulando por un circuito eléctrico, o lo que es igual, 6 300 000 000 000 000 000 = ( 6,3 · 1017 ) (seis mil trescientos billones) de electrones por segundo fluyendo por el conductor de dicho circuito. Por tanto, la intensidad ( I ) de una corriente eléctrica equivale a la cantidad de carga eléctrica ( Q ) en coulomb que fluye por un circuito cerrado en una unidad de tiempo.

Los submúltiplos más utilizados del amper son los siguientes:

miliamper ( mA ) = 10-3 A = 0,001 amper
microamper ( mA ) = 10-6 A = 0, 000 000 1 amper

El amperímetro:

 

La medición de la corriente que fluye por un circuito cerrado se realiza por medio de un amperímetro o un miliamperímetro, según sea el caso, conectado en serie en el propio circuito eléctrico. Para medir amper se emplea el «amperímetro» y para medir milésimas de amper se emplea el miliamperímetro.
 

La intensidad de circulación de corriente eléctrica por un circuito cerrado se puede medir por medio de un amperímetro conectado en serie con el circuito o mediante inducción electromagnética utilizando un amperímetro de gancho. Para medir intensidades bajas de corriente se puede utilizar también un multímetro que mida miliamper (mA).
El ampere como unidad de medida se utiliza, fundamentalmente, para medir la corriente que circula por circuitos eléctricos de fuerza en la industria, o en las redes eléctricas doméstica, mientras que los submúltiplos se emplean mayormente para medir corrientes de poca intensidad que circulan por los circuitos electrónicos.
 

 

 

3.- Resistencia.

La  resistencia de un material es una medida que indica la facilidad con que una corriente eléctrica puede fluir a través de él.

La resistencia de un conductor es directamente proporcional a su longitud e inversamente proporcional a su sección y varía con la temperatura.

 

Símbolos eléctricos

Medida de la resistencia. Ley de Ohm.

La resistencia de un conductor es el cociente entre la diferencia de potencial o voltaje que se le aplica y la intensidad de corriente que lo atraviesa

R= Va-Vb /I. Es la expresión matemática de la ley de Ohm.

La unidad de resistencia en el SI es el ohmio  : 1 ohmio = 1 voltio / 1 amperio.

Un ohmio es la resistencia que opone un conductor al paso de la corriente cuando, al aplicar a sus extremos una diferencia de potencial de un voltio, deja pasar una intensidad de corriente de un amperio.

A partir de la ley de Ohm se puede calcular la diferencia de potencial entre los extremos de una resistencia de la siguiente forma:

Va-Vb = I * R

Asociación de resistencias:

Serie: Es cuando las resistencias están una detrás de otra. La intensidad en cada resistencia son iguales.

 

                    VT = V1 + V2 + V3 + …

                    RT = R1 + R2 + R3 + …

Ejemplo:

 

 RT = 5 + 3 + 10 = 18         IT = VCC / RT

                    VR1 = 5 x IT

                    VR2 = 3 x IT

                    VR3 = 10 x IT

 

Paralelo: Es cuando las entradas de cada resistencia están conectadas a un mismo punto y las de salida en otro. El voltaje de cada resistencia es igual al de la Vcc.

 

                    IT = IR1 + IR2 + IR3 + …

                    RT = (1 / R1) + (1 / R2) + (1 / R3) + …

Ejemplo:

 

 RT = (1 / 5) + (1 / 3) + (1 / 10 ) = 1.57

               RR1+R2 = (5 x 3) / (5 + 3) = 1.87   

             RT = (1.87 x 10) / (1.87 + 10) = 1.57

                     IT = Vcc / RT

                    IR1 = Vcc / 5

                    IR2 = Vcc / 3

                    IR3 = Vcc / 10

 

Pasos a seguir para resolver problemas aplicando la ley de Ohm:

  • Dibuja un esquema del circuito.
  • Halla la resistencia equivalente del circuito
  • Utiliza la expresión I = (Va-Vb)/ R o I = fem/R para calcular la intensidad del circuito principal
  • Aplica la ley de Ohm en las diferentes secciones del circuito.

Si deseas obtener más información sobre la ley de Ohm pincha aquí.

 

 

 

4.- Potencia

La potencia de un aparato electrónico es la energía eléctrica consumida en una unidad de tiempo (por lo general, un segundo).

potencia =  energía consumida/ tiempo         P=E/t

La unidad de potencia en el SI es el vatio  (W). A menudo la potencia viene expresada en kilowatios. 1kW= 1000 W.

P = (VA-VB)*I

De esta ecuación se deduce que:

  • Una diferencia de potencial más elevada origina una potencia mayor, porque cada electrón transporta mucha más energía.

  • Una intensidad mayor incrementa la potencia, pues hay más electrones que gastan su energía cada segundo.

Ejemplo:

             Calcula la intensidad de una bombilla de 100W a 220V y calcula su resistencia.

                         I = P / V = 100 / 200 = 0.45A

                         R = P / I2 = 100 / (0.45)2 = 483

El consumo de energía eléctrica:

La energía eléctrica consumida se calcula a partir de la expresión de la potencia multiplicada por el tiempo-

Energía consumida = potencia * tiempo      E=P*t

La energía viene dada en Julios (1 Julio = 1 vatio * 1 segundo). No obstante, esta no es la unidad de energía eléctrica que aparece en algunos sitios, sino el kilovatio  

5.- Efectos de la corriente eléctrica.

Al hablar de los efectos de la corriente eléctrica, nos referimos a las diferentes posibilidades de transformación de la energía eléctrica en otras formas de energía útiles para los seres humanos.

Efecto calorífico o térmico.

Podemos describir el movimiento de los electrones en un conductor como una serie de movimientos acelerados, cada uno de los cuales termina con un choque contra alguna de las partículas fijas del conductor.

Los electrones ganan energía cinética durante las trayectorias libres entre choques, y ceden a las partículas fijas, en cada choque, la misma cantidad de energía que habían ganado.  La energía adquirida por las partículas fijas (que son fijas solo en el sentido de que su posición media no cambia) aumenta la amplitud de su vibración o sea, se convierte en calor. Para deducir la cantidad de calor desarrollada en un conductor por unidad de tiempo, hallaremos primero la expresión general de la potencia suministrada a una parte cualquiera de un circuito eléctrico. Cuando una corriente eléctrica atraviesa un conductor, éste experimenta un aumento de temperatura.  Este efecto se denomina “efecto Joule”. 
Es posible calcular la cantidad de calor que puede producir una corriente eléctrica en cierto tiempo, por medio de la ley de Joule.

E = I 2 * R * t

Efecto luminoso.

La energía eléctrica se transforma en energía lumínica a través de la energía calorífica.

Efecto químico.

La energía eléctrica se transforma en energía química a través de la electrólisis.

Electrólisis:

Electrolisis, parte de la química que trata de la relación entre las corrientes eléctricas y las reacciones químicas, y de la conversión de la energía química en eléctrica y viceversa. En un sentido más amplio, la electrolisis es el estudio de las reacciones químicas que producen efectos eléctricos y de los fenómenos químicos causados por la acción de las corrientes o voltajes.

La mayoría de los compuestos inorgánicos y algunos de los orgánicos se ionizan al fundirse o cuando se disuelven en agua u otros líquidos; es decir, sus moléculas se disocian en componentes cargados positiva y negativamente que tienen la propiedad de conducir la corriente eléctrica. Si se coloca un par de electrodos en una disolución de un electrolito (o compuesto ionizable) y se conecta una fuente de corriente continua entre ellos, los iones positivos de la disolución se mueven hacia el electrodo negativo y los iones negativos hacia el positivo. Al llegar a los electrodos, los iones pueden ganar o perder electrones y transformarse en átomos neutros o moléculas; la naturaleza de las reacciones del electrodo depende de la diferencia de potencial o voltaje aplicado.

La acción de una corriente sobre un electrolito puede entenderse con un ejemplo sencillo. Si el sulfato de cobre se disuelve en agua, se disocia en iones cobre positivos e iones sulfato negativos. Al aplicar una diferencia de potencial a los electrodos, los iones cobre se mueven hacia el electrodo negativo, se descargan, y se depositan en el electrodo como elemento cobre. Los iones sulfato, al descargarse en el electrodo positivo, son inestables y combinan con el agua de la disolución formando ácido sulfúrico y oxígeno. Esta descomposición producida por una corriente eléctrica se llama electrólisis.

En todos los casos, la cantidad de material que se deposita en cada electrodo al pasar la corriente por un electrolito sigue la ley descubierta por el químico físico británico Michael Faraday.

Minientrada

fuentes de la electricidad

12 May

¿Que es la Electricidad?

La electricidad se puede definir como una forma de energía originada por el movimiento ordenado de electrones. Otros tipos de energía son la mecánicacalorífica, solar, etc.

Dependiendo de la energía que se quiera transformar en electricidad, será necesario aplicar una determinada acción. Se podrá disponer de electricidad por los siguientes procedimientos:

ENERGIA

ACCION

Mecánica

Frotamiento

Química

Reacción Química

Luminosa

Por Luz

Calórica

Calor

Magnética

Por Magnetismo

Mecánica

Por Presión

Hidráulica

Por Agua

Eólica

Por Aire

Solar

Panel Solar

Electricidad por Frotamiento

Las primeras observaciones sobre fenómenos eléctricos se realizaron ya en la antigua Grecia, cuando el filósofo Tales de Mileto (640-546 a.c.) comprobó que, al frotar barras de ámbar contra pieles curtidas, se producía en ellas características de atracción que antes no poseían.

Es el mismo experimento que ahora se puede hacer frotando una barra de plástico con un paño; acercándola luego a pequeños pedazos de papel, los atrae hacia sí, como es característico en los cuerpos electrizados.

Todos estamos familiarizados con los efectos de la electricidad estática, incluso algunas personas son más susceptibles que otras a su influencia.

Ciertos usuarios de automóviles sienten sus efectos al cerrar con la llave (un objeto metálico puntiagudo) o al tocar la chapa del coche.

Creamos electricidad estática, cuando frotamos un bolígrafo con nuestra ropa.

A continuación, comprobamos que el bolígrafo atrae pequeños trozos de papel.

Lo mismo podemos decir cuando frotamos vidrio con seda o ámbar con lana.

Para explicar como se origina la electricidad estática, hemos de considerar que la materia está hecha de átomos, y los átomos de partículas cargadas, un núcleo rodeado de una nube de electrones. Normalmente, la materia es neutra, tiene el mismo número de cargas positivas y negativas.

Algunos átomos tienen más facilidad para perder sus electrones que otros. Si un material tiende a perder algunos de sus electrones cuando entra en contacto con otro, se dice que es más positivo en la serie tribo – eléctrica.

Si un material tiende a capturar electrones cuando entra en contacto con otro material, dicho material es más negativo en la serie tribo – eléctrica.

Estos son algunos ejemplos de materiales ordenados de más positivo a más negativo:

Piel de conejo, vidrio, pelo humano, nylon, lana, seda, papel, algodónmadera, ámbar, polyester, poliuretano, vinilo (PVC), teflón.

El vidrio frotado con seda provoca una separación de las cargas por que ambos materiales ocupan posiciones distintas en la serie tribo – eléctrica, lo mismo se puede decir del ámbar y del vidrio.

Cuando dos materiales no conductores entran en contacto uno de los materiales puede capturar electrones del otro material. La cantidad de carga depende de la naturaleza de los materiales (de su separación en la serie tribo – eléctrica), y del área de la superficie que entra en contacto.

Otro de los factores que intervienen es el estado de las superficies, si son lisas o rugosas (la superficie de contacto es pequeña). La humedad o impurezas que contengan las superficies proporcionan un camino para que se recombinen las cargas.

La presencia de impurezas en el aire tiene el mismo efecto que la humedad.

Habremos observado que frotando el bolígrafo con nuestra ropa atrae a trocitos de papeles.

En las experiencias de aula, se frotan diversos materiales, vidrio con seda, cuero, etc..

Se emplean bolitas de sauco electrizadas para mostrar las dos clases de cargas y sus interacciones.

De estos experimentos se concluye que:

  1. La materia contiene dos tipos de cargas eléctricas denominadas positivas y negativas. Los objetos no cargados poseen cantidades iguales de cada tipo de carga. Cuando un cuerpo se frota la carga se transfiere de un cuerpo al otro, uno de los cuerpos adquiere un exceso de carga positiva y el otro, un exceso de carga negativa. En cualquier proceso que ocurra en un sistema aislado, la carga total o neta no cambia.
  2. Los objetos cargados con cargas del mismo signo, se repelen.
  3. Los objetos cargados con cargas de distinto signo, se atraen.

Si antes de empezar las experiencias, se aproximan una barra de ebonita y a otra de vidrio, se comprobará que no existe electrificación ninguna, pues no hay ni atracción ni repulsión. De esta manera, se llega a la conclusión de que la electrización se produce por frotamiento y de que existe algún agente común que no se comporta de igual forma en ambos materiales.

Efectivamente, un tipo de partículas llamadas electrones abandonan en unos casos la barra, por acción del frotamiento, y otra veces abandona el paño para pasar a la barra.

El exceso de electrones da lugar a cargas negativas, y su falta a cargas positivas.

Los electrones son idénticos para todas las sustancias (los de cobre son iguales que los del vidrio o la madera), siendo estas, las partículas más importantes de las que se compone la materia, ya que disponen de carga y movilidad para desplazarse por las sustancias. La diferencia entre dos materiales vendrá dada, entre otras cosas, por la cantidad y movilidad de los electrones que la componen.

A título de curiosidad, comentar que la masa de un electrón es de:

0’0000000000000000000000000000009106 Kg.

Los conceptos de carga y movilidad son esenciales en el estudio de la electricidad, ya que, sin ellos, no podría existir la corriente eléctrica.

Electricidad por Acción Química

Para ver el gráfico seleccione la opción «Descargar» del menú superior

Dispositivo que convierte la energía química en eléctrica. Todas las pilas consisten en un electrolito (que puede ser líquido, sólido o en pasta), un electrodo positivo y un electrodo negativo. El electrolito es un conductor iónico; uno de los electrodos produce electrones y el otro electrodo los recibe. Al conectar los electrodos al circuito que hay que alimentar, se produce una corriente eléctrica. Véase Electroquímica.

Las pilas en las que el producto químico no puede volver a su forma original una vez que la energía química se ha transformado en energía eléctrica (es decir, cuando las pilas se han descargado), se llaman pilas primarias o voltaicas. Las pilas secundarias o acumuladores son aquellas pilas reversibles en las que el producto químico que al reaccionar en los electrodos produce energía eléctrica, puede ser reconstituido pasando una corriente eléctrica a través de él en sentido opuesto a la operación normal de la pila.

Entre los extremos de los metales, fuera del electrolito, se genera una diferencia de potencial, o voltaje, que puede dar lugar a una corriente eléctrica. En la pila de la figura 3 el zinc adquiere carga negativa, mientras que el cobre adquiere cargas positivas. Al zinc se le llama cátodo y el cobre recibe el nombre de ánodo. Así se tiene una fuente de electricidad distinta a la generada por fricción. Con este medio químico para obtener electricidad se abrieron nuevas posibilidades de aplicación práctica y experimental.

La explicación de las reacciones químicas que ocurren en la pila o celda voltaica se dio muchos años después, ya que en la época de Volta la química apenas empezaba a desarrollarse como ciencia moderna. Solamente diremos que, por un lado, el zinc adquiere un exceso de electrones, mientras que por el otro, el ácido con el cobre da lugar a cargas eléctricas positivas. Al unir el cobre con el zinc por medio de un alambre conductor, los electrones del zinc se mueven a través del alambre, atraídos por las cargas del cobre y al llegar a ellas se les unen formando hidrógeno.

Electricidad por Acción de la Luz

A medida que la luz solar se hace más intensa, el voltaje que se genera entre las dos capas de la célula fotovoltaica aumenta.

¿Cómo funciona una célula fotovoltaica?

Para ver el gráfico seleccione la opción «Descargar» del menú superior

En ausencia de luz, el sistema no genera energía.

Cuando la luz solar incide sobre la placa, la célula empieza a funcionar. Los fotones de la luz solar interaccionan con los electrones disponibles e incrementan su nivel de energía.

Electricidad Térmica por Acción del Calor

Central de generación térmica:

Es el tipo de central donde se usa una turbina accionada por vapor de agua inyectado a presión para mover el eje de los generadores eléctricos. Se puede producir desde los 5 hasta los 5000 kwatts.

Las centrales térmicas convencionales y las térmicas nucleares utilizan la energía contenida en el vapor a presión. El ejemplo más sencillo consiste en conectar una tetera llena de agua hirviendo a una rueda de paletas, enlazada a su vez a un generador. El chorro de vapor procedente de la tetera mueve las paletas, y éstas, el rotor.
Podemos conseguir vapor de muchas maneras: quemando carbón, petróleogas o residuos urbanos, o bien aprovechando la gran cantidad de calor que generan las reacciones de fisión nuclear. Incluso se puede producir vapor concentrando la energía del sol.
El proceso seguido en todas las centrales térmicas (convencionales o nucleares) tiene cuatro partes principales:
1. Generador de calor (puede ser una caldera para quemar carbón, fuel, gas, biogás, biomasa o residuos urbanos, o bien un reactor nuclear).
2. Circuito cerrado por donde circula el fluído que porta la energía cinética necesaria (agua en fase líquida y en fase de vapor). El generador de vapor tiene una gran superficie de contacto para facilitar la transferencia de calor de la caldera. (En las centrales de gas de ciclo combinado, el fluido es el propio gas en combustión).
3. Condensador o circuito de enfriamiento. convierte el vapor «muerto» de baja densidad en agua líquida de alta densidad, apta para ser convertida de nuevo en vapor «vivo». El calor residual del vapor «muerto» se transfiere a otro medio (generalmente un río o un embalse).
4. La turbina convierte la energía cinética del vapor «vivo» en movimiento rotatorio. Las ruedas de paletas se disponen una tras otra, con diferentes configuraciones, para aprovechar toda la energía contenida en el vapor a presión a medida que se expande y pierde fuerza. El generador convierte el giro en corriente eléctrica, gracias al proceso de inducción electromagnética

Utilizan el calor del interior de la Tierra.

Electricidad por Magnetismo

En 1819, el físico danés Hans Christian Oersted llevó a cabo un importante descubrimiento al observar que una aguja magnética podía ser desviada por una corriente eléctrica. Este descubrimiento, que mostraba una conexión entre la electricidad y el magnetismo, fue desarrollado por el científico francés André Marie Ampère, que estudió las fuerzas entre cables por los que circulan corrientes eléctricas, y por el físico francés Dominique François Arago, que magnetizó un pedazo de hierro colocándolo cerca de un cable recorrido por una corriente. En 1831, el científico británico Michael Faraday descubrió que el movimiento de un imán en las proximidades de un cable induce en éste una corriente eléctrica; este efecto era inverso al hallado por Oersted. Así, Oersted demostró que una corriente eléctrica crea un campo magnético, mientras que Faraday demostró que puede emplearse un campo magnético para crear una corriente eléctrica. La unificación plena de las teorías de la electricidad y el magnetismo se debió al físico británico James Clerk Maxwell, que predijo la existencia de ondas electromagnéticas e identificó la luz como un fenómeno electromagnético (véase Física).

James Clerk Maxwell Conocido como uno de los científicos más destacados del siglo XIX, James Clerk Maxwell desarrolló una teoría matemática que relaciona las propiedades de los campos eléctricos y magnéticos. Los trabajos de Maxwell lo llevaron a predecir la existencia de las ondas electromagnéticas, e identificó la luz como un fenómeno electromagnético. Sus investigaciones contribuyeron a algunos de los descubrimientos más importantes en el campo de la física durante el siglo XX, incluidas la teoría de la relatividad especial de Einstein y la teoría cuántica.Hulton Deutsch

Los estudios posteriores sobre el magnetismo se centraron cada vez más en la comprensión del origen atómico y molecular de las propiedades magnéticas de la materia. En 1905, el físico francés Paul Langevin desarrolló una teoría sobre la variación con la temperatura de las propiedades magnéticas de las sustancias paramagnéticas (ver más adelante), basada en la estructura atómica de la materia. Esta teoría es uno de los primeros ejemplos de la descripción de propiedades macroscópicas a partir de las propiedades de los electrones y los átomos. Posteriormente, la teoría de Langevin fue ampliada por el físico francés Pierre Ernst Weiss, que postuló la existencia de un campo magnético interno, molecular, en los materiales como el hierro. Este concepto, combinado con la teoría de Langevin, sirvió para explicar las propiedades de los materiales fuertemente magnéticos como la piedra imán.

Campos magnéticos y corrientes En 1813, Hans Christian Oersted predijo que se hallaría una conexión entre la electricidad y el magnetismo. En 1819 colocó una brújula cerca de un hilo recorrido por una corriente y observó que la aguja magnética se desviaba. Con ello demostró que las corrientes eléctricas producen campos magnéticos. Aquí vemos cómo las líneas del campo magnético rodean el cable por el que fluye la corriente.© MicrosoftCorporation. Reservados todos los derechos.

Después de que Weiss presentara su teoría, las propiedades magnéticas se estudiaron de forma cada vez más detallada. La teoría del físico danés Niels Bohr sobre la estructura atómica, por ejemplo, hizo que se comprendiera la tabla periódica y mostró por qué el magnetismo aparece en los elementos de transición, como el hierro, en los lantánidos o en compuestos que incluyen estos elementos. Los físicos estadounidenses Samuel Abraham Goudsmit y George Eugene Uhlenbeck demostraron en 1925 que los electrones tienen espín y se comportan como pequeños imanes con un ‘momento magnético’ definido. El momento magnético de un objeto es una magnitud vectorial (véase Vector) que expresa la intensidad y orientación del campo magnético del objeto. El físico alemán Werner Heisenberg dio una explicación detallada del campo molecular de Weiss en 1927, basada en la recientemente desarrollada mecánica cuántica (ver Teoría cuántica). Más tarde, otros científicos predijeron muchas estructuras atómicas del momento magnético más complejas, con diferentes propiedades magnéticas.

4 EL CAMPO MAGNÉTICO

Una barra imantada o un cable que transporta corriente pueden influir en otros materiales magnéticos sin tocarlos físicamente porque los objetos magnéticos producen un ‘campo magnético’. Los campos magnéticos suelen representarse mediante ‘líneas de campo magnético’ o ‘líneas de fuerza’. En cualquier punto, la dirección del campo magnético es igual a la dirección de las líneas de fuerza, y la intensidad del campo es inversamente proporcional al espacio entre las líneas. En el caso de una barra imantada, las líneas de fuerza salen de un extremo y se curvan para llegar al otro extremo; estas líneas pueden considerarse como bucles cerrados, con una parte del bucle dentro del imán y otra fuera. En los extremos del imán, donde las líneas de fuerza están más próximas, el campo magnético es más intenso; en los lados del imán, donde las líneas de fuerza están más separadas, el campo magnético es más débil. Según su forma y su fuerza magnética, los distintos tipos de imán producen diferentes esquemas de líneas de fuerza. La estructura de las líneas de fuerza creadas por un imán o por cualquier objeto que genere un campo magnético puede visualizarse utilizando una brújula o limaduras de hierro. Los imanes tienden a orientarse siguiendo las líneas de campo magnético. Por tanto, una brújula, que es un pequeño imán que puede rotar libremente, se orientará en la dirección de las líneas. Marcando la dirección que señala la brújula al colocarla en diferentes puntos alrededor de la fuente del campo magnético, puede deducirse el esquema de líneas de fuerza. Igualmente, si se agitan limaduras de hierro sobre una hoja de papel o un plástico por encima de un objeto que crea un campo magnético, las limaduras se orientan siguiendo las líneas de fuerza y permiten así visualizar su estructura.

Los campos magnéticos influyen sobre los materiales magnéticos y sobre las partículas cargadas en movimiento. En términos generales, cuando una partícula cargada se desplaza a través de un campo magnético, experimenta una fuerza que forma ángulos rectos con la velocidad de la partícula y con la dirección del campo. Como la fuerza siempre es perpendicular a la velocidad, las partículas se mueven en trayectorias curvas. Los campos magnéticos se emplean para controlar las trayectorias de partículas cargadas en dispositivos como los aceleradores de partículas o los espectrógrafosde masas.

5 TIPOS DE MATERIALES MAGNÉTICOS

Paramagnetismo El oxígeno líquido queda atrapado en el campo magnético de un electroimán, porque el oxígeno (O2) es paramagnético. El oxígeno tiene dos electrones desapareados cuyos momentos magnéticos se alinean con el campo magnético externo. Cuando esto ocurre, las moléculas de O2 se comportan como imanes minúsculos y quedan atrapadas entre los polos del electroimán.Phototake NYC/Yoav Levy

Las propiedades magnéticas de los materiales se clasifican siguiendo distintos criterios.

Una de las clasificaciones de los materiales magnéticos —que los divide en diamagnéticos, paramagnéticos y ferromagnéticos— se basa en la reacción del material ante un campo magnético. Cuando se coloca un material diamagnético en un campo magnético, se induce en él un momento magnético de sentido opuesto al campo. En la actualidad se sabe que esta propiedad se debe a las corrientes eléctricas inducidas en los átomos y moléculas individuales. Estas corrientes producen momentos magnéticos opuestos al campo aplicado. Muchos materiales son diamagnéticos; los que presentan un diamagnetismo más intenso son el bismuto metálico y las moléculas orgánicas que, como el benceno, tienen una estructura cíclica que permite que las corrientes eléctricas se establezcan con facilidad.

El comportamiento paramagnético se produce cuando el campo magnético aplicado alinea todos los momentos magnéticos ya existentes en los átomos o moléculas individuales que componen el material. Esto produce un momento magnético global que se suma al campo magnético. Los materiales paramagnéticos suelen contener elementos de transición o lantánidos con electrones desapareados. El paramagnetismo en sustancias no metálicas suele caracterizarse por una dependencia de la temperatura: la intensidad del momento magnético inducido varía inversamente con la temperatura. Esto se debe a que al ir aumentando la temperatura, cada vez resulta más difícil alinear los momentos magnéticos de los átomos individuales en la dirección del campo magnético.

Las sustancias ferromagnéticas son las que, como el hierro, mantienen un momento magnético incluso cuando el campo magnético externo se hace nulo. Este efecto se debe a una fuerte interacción entre los momentos magnéticos de los átomos o electrones individuales de la sustancia magnética, que los hace alinearse de forma paralela entre sí. En circunstancias normales, los materiales ferromagnéticos están divididos en regiones llamadas ‘dominios’; en cada dominio, los momentos magnéticos atómicos están alineados en paralelo. Los momentos de dominios diferentes no apuntan necesariamente en la misma dirección. Aunque un trozo de hierro normal puede no tener un momento magnético total, puede inducirse su magnetización colocándolo en un campo magnético, que alinea los momentos de todos los dominios. La energía empleada en la reorientación de los dominios desde el estado magnetizado hasta el estado desmagnetizado se manifiesta en un desfase de la respuesta al campo magnético aplicado, conocido como ‘histéresis’.

Un material ferromagnético acaba perdiendo sus propiedades magnéticas cuando se calienta. Esta pérdida es completa por encima de una temperatura conocida como punto de Curie, llamada así en honor del físico francés Pierre Curie, que descubrió el fenómeno en 1895. (El punto de Curie del hierro metálico es de unos 770 °C).

  

 Electricidad por Presión

En esta figura podemos observar, la presión que ejerce las corrientes de agua subterráneas, las mismas que accionan las turbinas que posteriormente generan la energía eléctrica, este mismo proceso lo utilizan en los barcos y grandes buques como energía alterna al sistema principal.

En la figura siguiente, podemos observar la presión que ejerce el agua en una represa de agua, este sistema es el mas utilizado.

En las presas se genera electricidad liberando un flujo controlado de agua a alta presión a través de un conducto forzado. El agua impulsa unas turbinas que mueven los generadores y producen así una corriente eléctrica. A continuación, esta corriente elevada de baja tensión pasa por un elevador de tensión que la transforma

Electricidad Hidráulica por Acción de Agua

De todos las energías enunciadas anteriormente, la empleada para producir electricidad en grandes cantidades es la magnética.

Su producción se basa en el hecho de que, al mover un conductor (material con gran movilidad de electrones) en presencia de un imán (campo magnético), en el conductor se produce un movimiento ordenado de electrones, como consecuencia de las fuerzas de atracción y repulsión originadas por el campo magnético.

En esta forma de producción de electricidad se basa el funcionamiento de los alternadores, motores y dinamos.

Alternador: Dispositivo capaz de transformar el movimiento rotativo en electricidad. (Produce Corriente Alterna)
Motor: Dispositivo capaz de transformar la electricidad en movimiento rotatorio.
Dinamo: Dispositivo capaz de transformar el movimiento rotativo en electricidad. (Produce Corriente Continua)
Turbina: Dispositivo mecánico que transforma, la energía cinética de un fluido, en movimiento rotativo y viceversa

Cualquier central eléctrica, basa su producción de electricidad en el giro de turbinas unidas a ejes de alternadores. Este giro se producirá por la caída de agua (central hidroeléctrica).

¿Cómo funciona una central hidroeléctrica?
La clave del diseño de las centrales hidroeléctricas está en un diseño adecuado de la tubería forzada de agua, que aumentará su velocidad, y en la elección de la turbina más adecuada para que extraiga la mayor cantidad posible de energía del agua en movimiento.
Uno de los modelos más utilizados es la turbina Kaplan, con eje vertical y provista de paletas móviles, que le permiten adaptarse a las condiciones de presión del chorro de agua.

Electricidad Eólica por acción del aire

Centrales eólicas
El sol también es la causa del movimiento de grandes masas de aire desde zonas de alta presión a zonas de baja presión. Este viento se puede recoger por grandes hélices o molinos, conectados a un rotor.
La clave de la conversión de la energía contenida en el aire en movimiento giratorio está en un diseño muy cuidadoso, tanto de las palas de la hélice como del multiplicador, que convierte su rotación lenta en un giro muy rápido.

El viento choca contra las palas y provoca diferencias de presión entre sus dos caras, haciendo girar su estructura. Es un proceso idéntico al que hace avanzar un avión gracias al giro de la hélice.
El engranaje multiplicador convierte el movimiento lento de la hélice en un giro rápido para activar el generador.

El tamaño de las palas también está en relación con la cantidad de energía que producirá el molino.

El emplazamiento de los molinos debe ser elegido cuidadosamente.

Los mapas de potencialidad eólica marcan las zonas más adecuadas para la instalación de aerogeneradores que, por lo general, coinciden con las cumbres de montañas y sierras y con la costa.

¿Cómo funciona un aerogenerador?
La eficiencia de conversión de la fuerza del viento en electricidad depende en gran medida del diseño de las palas de la hélice. Existen modelos muy diversos, con dos, tres y hasta seis palas. Deben soportar y aprovechar condiciones de presión del viento muy variables, por lo que su aerodinámica se diseña con tanto cuidado como la de un avión.

El engranaje multiplicador transforma el giro lento de las palas del molino en un giro muy rápido que alimentará el generador. Todos estos mecanismos están colocados en una navecilla situada a gran altura sobre el suelo por medio de un soporte.

Electricidad por Energía Solar

La energía que procede del sol es fuente directa o indirecta de casi toda la energía que usamos. Los combustibles fósiles existen gracias a la fotosíntesisque convirtió la radiación solar en las plantas y animales de las que se formaron el carbón, gas y petróleo. El ciclo del agua que nos permite obtener energía hidroeléctrica es movido por la energía solar que evapora el agua, forma nubes y las lleva tierra adentro donde caerá en forma de lluvia o nieve. El viento también se forma cuando unas zonas de la atmósfera son calentadas por el sol en mayor medida que otras.

El aprovechamiento directo de la energía del sol se hace de diferentes formas:

a) Calentamiento directo de locales por el sol

En invernaderos, viviendas y otros locales, se aprovecha el sol para calentar el ambiente. Algunos diseños arquitectónicos buscan aprovechar al máximo este efecto y controlarlo para poder restringir el uso de calefacción o de aire acondicionado.

b) Acumulación del calor solar

Se hace con paneles o estructuras especiales colocadas en lugares expuestos al sol, como los tejados de las viviendas, en los que se calienta algún fluido que se almacena el calor en depósitos. Se usa, sobre todo, para calentar agua y puede suponer un importante ahorro energético si tenemos en cuenta que en un país desarrollado más del 5% de la energía consumida se usa para calentar agua.

c) Generación de electricidad

Se puede generar electricidad a partir de la energía solar por varios procedimientos. En el sistema termal la energía solar se usa para convertir agua en vapor en dispositivos especiales. En algunos casos se usan espejos cóncavos que concentran el calor sobre tubos que contienen aceite. El aceite alcanza temperaturas de varios cientos de grados y con él se calienta agua hasta ebullición. Con el vapor se genera electricidad en turbinas clásicas. Con algunos dispositivos de estos se consiguen rendimientos de conversión en energía eléctrica del orden del 20% de la energía calorífica que llega a los colectores

La luz del sol se puede convertir directamente en electricidad usando el efecto fotoeléctrico. Las células fotovoltaicas no tienen rendimientos muy altos. La eficiencia media en la actualidad es de un 10 a un 15%, aunque algunos prototipos experimentales logran eficiencias de hasta el 30%. Por esto se necesitan grandes extensiones si se quiere producir energía en grandes cantidades.

Uno de los problemas de la electricidad generada con el sol es que sólo se puede producir durante el día y es difícil y cara para almacenar. Para intentar solucionar este problema se están investigando diferentes tecnologías. Una de ellas usa la electricidad para disociar el agua, por electrólisis, en oxígeno e hidrógeno. Después el hidrógeno se usa como combustible para regenerar agua, produciendo energía por la noche.

La producción de electricidad por estos sistemas es más cara, en condiciones normales, que por los sistemas convencionales. Sólo en algunas situaciones especiales compensa su uso, aunque las tecnologías van avanzando rápidamente y en el futuro pueden jugar un importante papel en la producción de electricidad. En muchos países en desarrollo se están usando con gran aprovechamiento en las casas o granjas a los que no llega el suministro ordinario de electricidad porque están muy lejos de las centrales eléctricas.

aplicaciones de electricidad

12 May

Aplicaciones de la electricidad

 Desde su introducción, la electricidad ha ampliado sus campos de aplicación en muchos campos. A continuación se detallan algunos de sus usos más relevantes.

También se aplica la inducción electromagnética para la construcción de motores movidos por energía eléctrica, que permiten el funcionamiento de innumerables dispositivos.Máquinas eléctricas

Generador electrostatico : 

Motor eléctrico

Esquema de un motor eléctrico.

Desde que Faraday describió el proceso de inducción y generación de la corriente eléctrica, se iniciaron experiencias y proyectos que culminaron con el invento y fabricación de los diferentes tipos de motores eléctricos que existen. El paso definitivo lo consiguió el ingeniero Tesla que, en 1887, fabricó el primer motor asíncrono trifásico de corriente alterna.

Transformador 

 

Representación esquemática del transformador.

El origen del transformador se remonta a 1851, cuando el físico alemán Heinrich Daniel Ruhmkorff diseñó la llamada bobina de Ruhmkorff, precursora de los transformadores modernos. El transformador es una máquina eléctrica carente de movimiento que permite aumentar o disminuir el voltaje o tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia y la potencia con un alto rendimiento. Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado de hierro dulce o hierro silicio. Las bobinas o devanados se denominan primario y secundario, según correspondan a la entrada o salida del sistema en cuestión, respectivamente. El funcionamiento se produce cuando se aplica una fuerza electromotriz alterna en el devanado primario, las variaciones de intensidad y sentido de la corriente alterna crearán un campo magnético variable dependiendo de la frecuencia de la corriente. Este campo magnético variable originará, por inducción, la aparición de una fuerza electromotriz en los extremos del devanado secundario. La relación teórica entre la fuerza electromotriz inductora (Ep), la aplicada al devanado primario y la fuerza electromotriz inducida (Es), la obtenida en el secundario, es directamente proporcional al número de espiras de los devanados primario (Np) y secundario (Ns) .

\frac{Ep}{Es}=\frac{Np}{Ns}

La razón de transformación del voltaje entre el bobinado primario y el secundario depende por tanto del número de ruletas que tenga cada uno. Si el número de vueltas del secundario es el triple del primario. En el secundario habrá el triple de tensión.

\frac{Np}{Ns}=\frac{Vp}{Vs}

Esta particularidad tiene su utilidad para el transporte de energía eléctrica a larga distancia, al poder efectuarse el transporte a altas tensiones y pequeñas intensidades y por tanto con pequeñas pérdidas. El transformador ha hecho posible la distribución de energía eléctrica a todos los hogares, industrias, etc. Si no fuera por el transformador tendría que acortarse la distancia que separa a los generadores de electricidad de los consumidores. El transformador lo encontramos en muchos lugares, en las lámparas de bajo consumo, cargadores de pilas, vehículos, en sótanos de edificios, en las centrales hidroeléctricas y otros generadores de electricidad. Su tamaño puede variar desde muy pequeños a enormes transformadores que pueden pesar más de 500 t.1

Máquinas frigoríficas y aire acondicionado 

 

Máquina térmica de frío y calor.

La invención de las máquinas frigoríficas ha supuesto un avance importante en todos los aspectos relacionados con la conservación y trasiego de alimentos frescos que necesitan conservarse fríos para que tengan mayor duración en su estado natural, y en conseguir una climatización adecuada en viviendas y locales públicos. Las máquinas frigoríficas se clasifican en congeladoras y en refrigeradoras. Las de uso industrial están ubicadas en empresas, barcos o camiones que trabajan con alimentos congelados o refrigerados; en el ámbito doméstico se utilizan máquinas conocidas con el nombre de frigorífico y congelador, así como aparatos de aire acondicionado que están presente en muchas viviendas variando en prestaciones y capacidad.

En 1784 William Cullen construye la primera máquina para enfriar, pero hasta 1927 no se fabrican los primeros refrigeradores domésticos (de General Electric). Cuatro años más tarde, Thomas Midgley descubre el freón, que por sus propiedades ha sido desde entonces muy empleado como fluido de trabajo en máquinas de enfriamiento como equipos de aire acondicionado y refrigeradores, tanto a escala industrial como doméstica. Sin embargo, se ha demostrado que el freón y los compuestos químicos similares a él, también conocidos como clorofluorocarburos (CFC), son los principales causantes de la destrucción en la capa de ozono, produciendo el agujero detectado en la Antártida, por lo que en 1987 se firmó el Protocolo de Montreal para restringir el uso de estos compuestos. En la actualidad (2008) todas las máquinas frigoríficas utilizan gases refrigerantes que no perjudican a la capa de ozono.

Una máquina frigorífica es un tipo de máquina térmica generadora que transforma algún tipo de energía, habitualmente mecánica, en energía térmica para obtener y mantener en un recinto una temperatura menor a la temperatura exterior. La energía mecánica necesaria puede ser obtenida previamente a partir de otro tipo de energía, como la energía eléctrica mediante un motor eléctrico. Esta transferencia se realiza mediante un fluido frigorígeno o refrigerante, que en distintas partes de la máquina sufre transformaciones de presión, temperatura y fase (líquida o gaseosa); y que es puesto en contacto térmico con los recintos para absorber calor de unas zonas y transferirlo a otras.

Una máquina frigorífica debe contener como mínimo los cuatro siguientes elementos:

  • Compresor: es el elemento que suministra energía al sistema. El refrigerante llega en estado gaseoso al compresor y aumenta su presión.
  • Condensador: es un intercambiador de calor, en el que se disipa el calor absorbido en el evaporador (más adelante) y la energía del compresor. En el condensador el refrigerante cambia de fase pasando de gas a líquido.
  • Sistema de expansión: el refrigerante líquido entra en el dispositivo de expansión donde reduce su presión y esta a su vez reduce bruscamente su temperatura.
  • Evaporador: el refrigerante a baja temperatura y presión pasa por el evaporador, que al igual que el condensador es un intercambiador de temperatura, y absorbe el calor del recinto donde está situado. El refrigerante líquido que entra al evaporador se transforma en gas al absorber el calor del recinto.

Tanto en el evaporador como en el condensador la transferencia energética se realiza principalmente en forma de calor latente.

Diagrama del ciclo de una bomba térmica simple: 1) condensador, 2) válvula de expansión, 3) evaporador, 4) compresor.

Desde el punto de vista económico, el mejor ciclo de refrigeración es aquel que extrae la mayor cantidad de calor (Q2) del foco frío (T2) con el menor trabajo (W). Por ello, se define la eficiencia de una máquina frigorífica como el cociente Q2/W:

Eficiencia  = \frac{Q2}{W} = \frac{Q_2}{Q_2-Q_1}
  • Q2: Representa el calor extraído de la máquina frigorífica por los serpentines refrigerantes situados en su interior (congelador).
  • W: Es el trabajo realizado por el motor que acciona el compresor.
  • Q1: Es el calor cedido a los serpentines (o radiador) refrigerantes exteriores (en la parte posterior del aparato y que se elimina al ambiente por una circulación de aire (natural o forzada con auxilio de un ventilador, caso de los aparatos de aire refrigerado).

La máquina frigorífica se puede utilizar como calentador (véase Ciclo de Carnot). Para ello, basta con hacer que el foco caliente sea la habitación, T1, y el frío el exterior. Es el principio de funcionamiento de la bomba de calor, que es más ventajosa de utilizar que un caldeo por resistencia eléctrica. Esta doble función de producir frío y calor se utiliza en los equipos modernos de aire acondicionado que se instalan en las viviendas.

El ingeniero francés Nicolas Léonard Sadi Carnot fue el primero que abordó el problema del rendimiento de un motor térmico.

En España, todas las empresas que se dedican a las actividades relacionadas con máquinas frigoríficas y climatización se encuadran bajo el concepto de frío industrial y los profesionales dedicados a estas tareas reciben el nombre de frigoristas.3

Véase también: Ciclo de Carnot.

Electroimanes 

Electroimán de grandes dimensiones empleado en Fermilab.

Un electroimán es un tipo de imán en el que el campo magnético se produce mediante el flujo de una corriente eléctrica, desapareciendo en cuanto cesa dicha corriente. Fue inventado por el electricista británico William Sturgeon en 1825. Sturgeon podía regular su electroimán, lo que supuso el principio del uso de la energía eléctrica en máquinas útiles y controlables, estableciendo los cimientos para las comunicaciones electrónicas a gran escala.

El tipo más simple de electroimán es un trozo de cable enrollado. Una bobina con forma de tubo recto (parecido a un tornillo) se llama solenoide, y cuando además se curva de forma que los extremos coincidan se denomina toroide. Pueden producirse campos magnéticos mucho más fuertes si se sitúa un «núcleo» de material paramagnético o ferromagnético (normalmente hierro dulce) dentro de la bobina. El núcleo concentra el campo magnético, que puede entonces ser mucho más fuerte que el de la propia bobina.

La principal ventaja de un electroimán sobre un imán permanente es que el campo magnético puede ser rápidamente manipulado en un amplio rango controlando la cantidad de corriente eléctrica. Sin embargo, se necesita una fuente continua de energía eléctrica para mantener el campo. En aplicaciones donde no se necesita un campo magnético variable, los imanes permanentes suelen ser superiores. Adicionalmente, éstos pueden ser fabricados para producir campos magnéticos más fuertes que los electroimanes de tamaño similar.[cita requerida]

Los electroimanes se usan en muchas situaciones en las que se necesita un campo magnético variable rápida o fácilmente. Muchas de estas aplicaciones implican la deflección de haces de partículas cargadas, como en los casos del tubo de rayos catódicos y el espectrómetro de masa.

Los electroimanes son los componentes esenciales de muchos interruptores, siendo usados en los frenos y embragues electromagnéticos de los automóviles. En algunos tranvías, los frenos electromagnéticos se adhieren directamente a los raíles. Se usan electroimanes muy potentes en grúas para levantar pesados bloques de hierro y acero, así como contenedores, y para separar magnéticamente metales en chatarrerías y centros de reciclaje. Los trenes de levitación magnética emplean poderosos electroimanes para flotar sin tocar la pista y así poder ir a grandes velocidades. Algunos trenes usan fuerzas atractivas, mientras otros emplean fuerzas repulsivas.

Los electroimanes se usan en los motores eléctricos rotatorios para producir un campo magnético rotatorio y en los motores lineales para producir un campo magnético itinerante que impulse laarmadura. Aunque la plata es el mejor conductor de la electricidad, el cobre es el material usado más a menudo debido a su bajo coste. A veces se emplea aluminio para reducir el peso.

Calcular la fuerza sobre materiales ferromagnéticos es, en general, bastante complejo. Esto se debe a las líneas de campo de contorno y a las complejas geometrías. Puede simularse usandoanálisis de elementos finitos. Sin embargo, es posible estimar la fuerza máxima bajo condiciones específicas. Si el campo magnético está confinado dentro de un material de alta permeabilidad, como es el caso de ciertas aleaciones de acero, la fuerza máxima viene dada por:

F = \frac{B^2 A}{2 \mu_o}

donde:

  • F es la fuerza en newtons;
  • B es el campo magnético en teslas;
  • A es el área de las caras de los polos en ;
  •  \mu_o  es la permeabilidad del espacio libre.4
 

Electroquímica

El área de la química que estudia la conversión entre la energía eléctrica y la energía química es la electroquímica. Los procesos electroquímicos son reacciones redox en donde la energía liberada por una reacción espontánea se transforma en electricidad, o la electricidad se utiliza para inducir una reacción química no espontánea. A este último proceso se le conoce comoelectrólisis.

 

Diagrama simplificado del proceso de electrólisis.

La palabra electrólisis procede de dos radicales: electro que hace referencia a electricidad, y lisis, que quiere decir ruptura. La electrólisis consiste en la descomposición mediante una corriente eléctrica de sustancias ionizadas denominadas electrolitos. Por ejemplo, en la electrólisis del agua se desprenden oxígeno (O2) e hidrógeno (H2).

Las reacciones químicas se dan en la interfase de un conductor eléctrico (llamado electrodo, que puede ser un metal o un semiconductor) y un conductor iónico (el electrolito) pudiendo ser una disolución y en algunos casos especiales, un sólido. Si una reacción química es conducida mediante un voltaje aplicado externamente, se hace referencia a una electrólisis, en cambio, si el voltaje o caída de potencial eléctrico, es creado como consecuencia de la reacción química , se conoce como un «acumulador de energía eléctrica», también llamado batería o celda galvánica.

A finales del siglo XVIII (Ilustración), el anatomista y médico italiano Luigi Galvani marcó el nacimiento de la electroquímica de forma científica al descubrir que al pasar electricidad por las ancas de una rana muerta éstas se contraían, y al tocar ambos extremos de los nervios empleando el mismo escalpelo pero descargado no sucedía nada. Posteriormente, la fabricación de la primera batería de la época moderna fue realizada por Alessandro Volta. Para mediados del siglo XIX, la modelización y estudio de la electroquímica se vieron aclarados por Michael Faraday (leyes de la electrólisis) y John Daniell (pila dependiente solo de iones metálicos zinc-cobre). A partir del siglo XX, la electroquímica permitió el descubrimiento de la carga del electrón por Millikan, y el establecimiento de la moderna teoría de ácidos y bases de Brønsted. Dichas contribuciones han permitido que en la actualidad (2008) la electroquímica se emparente a temas tan diversos que van desde la electroquímica cuántica de Revaz Dogonadze o Rudolph A. Marcus, hasta las celdas fotovoltaicas y la quimioluminiscencia.5

Véase también: Electrólisis.

Electroválvulas

 
 

A- Entrada
B- Diafragma
C- Cámara de presión
D- Conducto de vaciado de presión
E- Solenoide
F- Salida.

Una electroválvula es un dispositivo diseñado para controlar el flujo de un fluido a través de un conducto como puede ser una tubería. Es de uso muy común en los circuitos hidráulicos y neumáticos de maquinaria e instalaciones industriales.

Una electroválvula tiene dos partes fundamentales: el solenoide y la válvula. El solenoide convierte energía eléctrica en energía mecánica para actuar la válvula.

Existen varios tipos de electroválvulas. En algunas electroválvulas el solenoide actúa directamente sobre la válvula proporcionando toda la energía necesaria para su movimiento. Es corriente que la válvula se mantenga cerrada por la acción de un muelle y que el solenoide la abra venciendo la fuerza del muelle.

También es posible construir electroválvulas biestables que usan un solenoide para abrir la válvula y otro para cerrar o bien un solo solenoide que abre con un impulso y cierra con el siguiente.

Las electroválvulas pueden ser cerradas en reposo o normalmente cerradas lo cual quiere decir que cuando falla la alimentación eléctrica quedan cerradas o bien pueden ser del tipo abiertas en reposo o normalmente abiertas que quedan abiertas cuando no hay alimentación.

Hay electroválvulas que en lugar de abrir y cerrar lo que hacen es bifurcar o repartir la entrada entre dos salidas. Este tipo de electroválvulas a menudo se usan en los sistemas de calefacción por zonas, lo que permite calentar varias zonas de forma independiente utilizando una sola bomba de circulación.

En otro tipo de electroválvula el solenoide no controla la válvula directamente sino que el solenoide controla una válvula piloto secundaria y la energía para la actuación de la válvula principal la suministra la presión del propio fluido.6

Véase también: Solenoide.

Iluminación y alumbrado

 

Alumbrado de vías públicas.

La iluminación o alumbrado público es la acción o efecto de iluminar usando electricidad, vías públicas, monumentos, autopistas, aeropuertos, recintos deportivos, etc., así como la iluminación de las viviendas y especialmente la de los lugares de trabajo cuando las condiciones de luz natural no proporcionan la visibilidad adecuada.

En la técnica se refiere al conjunto de lámparasbombillasfocostubos fluorecentes, entre otros, que se instalan para producir la iluminación requerida, tanto a niveles prácticos como decorativos. Con la iluminación se pretende, en primer lugar conseguir un nivel de iluminación, o iluminancia, adecuado al uso que se quiere dar al espacio iluminado, cuyo nivel dependerá de la tarea que los usuarios hayan de realizar.

La iluminación en los centros de trabajo debe prevenir que se produzca fatiga visual, que se ocasiona si los lugares de trabajo y las vías de circulación no disponen de suficiente iluminación, ya sea natural o artificial, adecuada y suficiente durante la noche y cuando no sea suficiente la luz natural.7

Los locales, los lugares de trabajo y las vías de circulación en los que los trabajadores estén particularmente expuestos a riesgos en caso de avería de la iluminación artificial deben contar con una iluminación de seguridad de intensidad y duración suficiente. La iluminación deficiente ocasiona fatiga visual en los ojos, perjudica el sistema nervioso, degrada la calidad del trabajo y es responsable de una buena parte de los accidentes de trabajo.

La fotometría es la ciencia que se encarga de la medida de la luz como el brillo percibido por el ojo humano. Es decir, estudia la capacidad que tiene la radiación electromagnética de estimular elsistema visual. En este ámbito la iluminancia es la cantidad de flujo luminoso emitido por una fuente de luz que incide, atraviesa o emerge de una superficie por unidad de área. Su unidad de medida en el Sistema Internacional de Unidades es el Lux: 1 Lux = 1 Lumen/m².

En general, la iluminancia se define según la siguiente expresión:

E_V =\frac{dF}{dS}

donde:

  • EV es la iluminancia, medida en luxes.
  • F es el flujo luminoso, en lúmenes.
  • dS es el elemento diferencial de área considerado, en metros cuadrados.

La siguiente tabla recoge las principales magnitudes fotométricas, su unidad de medida y la magnitud radiométrica asociada:

Magnitud fotométrica Símbolo Unidad Abreviatura Magnitud radiométrica asociada
Cantidad de luz o energía luminosa \scriptstyle{Q_v} lumen•segundo lm•s Energía radiante
Flujo luminoso o potencia luminosa \scriptstyle{F} lumen (= cd•sr) lm Flujo radiante o potencia radiante
Intensidad luminosa \scriptstyle{I_v} candela cd Intensidad radiante
Luminancia \scriptstyle{L_v} candela /metro2 cd /m2 Radiancia
Iluminancia \scriptstyle{E_v} lux lx Irradiancia
Emitancia luminosa \scriptstyle{M_v} lux lx Emitancia radiante

La candela es una unidad básica del SI. Las restantes unidades fotométricas se pueden derivar de unidades básicas.

Véase también: Lámpara incandescente.

Producción de calor 

 

Un secador de pelo es un ejemplo doméstico del efecto Joule.

El físico británico James Prescott Joule descubrió en la década de 1860 que si en un conductor circula corriente eléctrica, parte de la energía cinética de los electrones se transforma en calor debido al choque que sufren con las moléculas del conductor por el que circulan, elevando la temperatura del mismo. Este efecto es conocido como efecto Joule en honor a su descubridor. Este efecto fue definido de la siguiente manera: «La cantidad de energía calorífica producida por una corriente eléctrica, depende directamente del cuadrado de la intensidad de la corriente, del tiempo que ésta circula por el conductor y de la resistencia que opone el mismo al paso de la corriente». Matemáticamente se expresa como

 Q = I^2\cdot R\cdot t \,

donde

Q es la energía calorífica producida por la corriente;
I es la intensidad de la corriente que circula y se mide en amperios;
R es la resistencia eléctrica del conductor y se mide en ohmios;
t es la tiempo el cual se mide en segundos.

Así, la potencia disipada por efecto Joule será:

 P = R\cdot I^2 = \frac{V^2}{R}\,

donde V es la diferencia de potencial entre los extremos del conductor.

Microscópicamente el efecto Joule se calcula a través de la integral de volumen del campo eléctrico \vec{E} por la densidad de corriente \vec{J}:

 P = \int\!\!\!\int\!\!\!\int_V \vec{J}\cdot \vec{E} dV \,

La resistencia es el componente que transforma la energía eléctrica en energía calorífica. En este efecto se basa el funcionamiento de los diferentes electrodomésticos que aprovechan el calor en sus prestaciones —braseros, tostadoras, secadores de pelo, calefacciones, etc.— y algunos aparatos empleados industrialmente —soldadoreshornos industriales, etc.— en los que el efecto útil buscado es, precisamente, el calor que desprende el conductor por el paso de la corriente. Sin embargo, en la mayoría de las aplicaciones de la electricidad es un efecto indeseado y la razón por la que los aparatos eléctricos y electrónicos necesitan un ventilador que disipe el calor generado y evite el calentamiento excesivo de los diferentes dispositivos.8

Robótica y máquinas CNC 

Una de las innovaciones más importantes y trascendentales en la producción de todo tipo de objetos en la segunda mitad del siglo XX ha sido la incorporación de robotsautómatas programablesy máquinas guiadas por Control numérico por computadora (CNC) en las cadenas y máquinas de producción, principalmente en tareas relacionadas con la manipulación, trasiego de objetos, procesos de mecanizado y soldadura. Estas innovaciones tecnológicas han sido viables entre otras cosas por el diseño y construcción de nuevas generaciones de motores eléctricos de corriente continua controlados mediante señales electrónicas de entrada y salida y el giro que pueden tener en ambos sentidos, así como la variación de su velocidad, de acuerdo con las instrucciones contenidas en el programa de ordenador que los controla. En estas máquinas se utilizan tres tipos de motores eléctricos: motores paso a pasoservomotores o motores encoder, ymotores lineales.9 La robótica es una rama de la tecnología que estudia el diseño y construcción de máquinas capaces de desempeñar tareas repetitivas, tareas en las que se necesita una alta precisión, tareas peligrosas para el ser humano o tareas irrealizables sin intervención de una máquina. Las ciencias y tecnologías en las que se basa son, entre otras, el álgebra, los autómatas programables, las máquinas de estados, la mecánica, la electrónica y la informática.

Un robot se define como una entidad hecha por el hombre y una conexión de retroalimentación inteligente entre el sentido y la acción directa bajo el control de un ordenador previamente programado con las tareas que tiene que realizar. Las acciones de este tipo de robots son generalmente llevadas a cabo por motores o actuadores que mueven extremidades o impulsan al robot. Hacia 1942, Isaac Asimov da una versión humanizada a través de su conocida serie de relatos, en los que introduce por primera vez el término robótica con el sentido de disciplina científica encargada de construir y programar robots. Además, este autor plantea que las acciones que desarrolla un robot deben ser dirigidas por una serie de reglas morales, llamadas las Tres leyes de la robótica.10

Los robots son usados hoy en día (2008) para llevar a cabo tareas sucias, peligrosas, difíciles, repetitivas o embotadas para los humanos. Esto usualmente toma la forma de un robot industrialusado en las líneas de producción. Otras aplicaciones incluyen limpieza de residuos tóxicosexploración espacialminería, búsqueda y rescate de personas y localización de minas terrestres. La manufactura continúa siendo el principal mercado donde los robots son utilizados. En particular, los robots articulados (similares en capacidad de movimiento a un brazo humano) son los más usados comúnmente. Las aplicaciones incluyen soldado, pintado y carga de maquinaria. La industria automotriz ha tomado gran ventaja de esta nueva tecnología donde los robots han sido programados para reemplazar el trabajo de los humanos en muchas tareas repetitivas. Recientemente, se ha logrado un gran avance en los robots dedicados a la medicina que utiliza robots de última generación en procedimientos de cirugía invasiva mínima. La automatización de laboratorios también es un área en crecimiento. Los robots siguen abaratándose y empequeñeciéndose en tamaño, gracias a la miniaturización de los componentes electrónicos que se utilizan para controlarlos. También, muchos robots son diseñados en simuladores mucho antes de que sean construidos e interactúen con ambientes físicos reales.

Señales luminosas

Se denomina señalización de seguridad al conjunto de señales que, referido a un objeto, actividad o situación determinada, proporcione una indicación o una obligación relativa a la seguridad o la salud en el trabajo mediante una señal en forma de panel, un color, una señal luminosa o acústica, una comunicación verbal o una señal gestual, según proceda.

Hay dos tipos de señales luminosas: las que actúan de forma intermitente y las que actúan de forma continuada. Las señales luminosas tienen el siguiente código de colores:

  • Rojo: condiciones anormales que precisan de una acción inmediata del operario.
  • Ámbar: atención o advertencia.
  • Verde: máquina dispuesta.
  • Blanco: circuito en tensión. Condiciones normales.
  • Azul: cualquier significado no previsto por los colores anteriores

Cuando se utilice una señal luminosa intermitente, la duración y frecuencia de los destellos deberán permitir la correcta identificación del mensaje, evitando que pueda ser percibida como continua o confundida con otras señales luminosas.

Semáforos

 

Semáforo en vía pública.

Un semáforo es un dispositivo eléctrico que regula el tráfico de vehículos y peatones en las intersecciones de vías urbanas que soporten mucho tráfico. También se utilizan semáforos en las vías de trenes para regular el tráfico de convoyes por las vías. El tipo más frecuente tiene tres luces de colores:

  • Verde, para avanzar
  • Rojo, para detenerse
  • Amarillo o ámbar, como paso intermedio del verde a rojo, o precaución si está intermitente.

Fue en 1914 cuando se instaló el primer semáforo eléctrico, en Cleveland (Estados Unidos). Contaba con luces rojas y verdes, colocadas sobre unos soportes con forma de brazo y además incorporaba un emisor de zumbidos.

Los semáforos han ido evolucionando con el paso del tiempo y actualmente (2008) se están utilizando lámparas a LED para la señalización luminosa, puesto que las lámparas de LED utilizan sólo 10% de la energía consumida por las lámparas incandescentes, tienen una vida estimada 50 veces superior, y por tanto generan importantes ahorros de energía y de mantenimiento, satisfaciendo el objetivo de conseguir una mayor fiabilidad y seguridad pública.

La óptica de LED está compuesta por una placa de circuito impreso, policarbonato de protección, casquillo roscante E-27, todos estos elementos integrados sobre un soporte cónico. El circuito impreso, policarbonato de protección y envolvorales, llamadas las Tres leyes de la robótica.

Uso doméstico 

El empleo de bombillas de bajo consumo supone un ahorro de hasta un 80% de energía respecto a las convencionales.

El uso doméstico de la electricidad se refiere a su empleo en los hogares. Los principales usos son alumbradoelectrodomésticoscalefacción y aire acondicionado. Se está investigando en producir aparatos eléctricos que tengan la mayor eficiencia energética posible, así como es necesario mejorar el acondicionamiento de los hogares en cuanto a aislamiento del exterior para disminuir el consumo de electricidad en el uso de la calefacción o del aire acondicionado, que son los aparatos de mayor consumo eléctrico.

Se denominan electrodomésticos a todas las máquinas o aparatos eléctricos que realizan tareas domésticas rutinarias, como pueden ser cocinar, conservar los alimentos o limpiar, tanto para un hogar como para instituciones, comercios o industrias. Los electrodomésticos se clasifican comercialmente en tres grupos:

En los países de la Unión Europea los fabricantes de electrodomésticos están obligados a etiquetar sus productos con la llamada etiqueta energética, con el fin de contribuir al ahorro energéticoy a la preservación del medio ambiente.

La etiqueta energética es una herramienta informativa que indica la cantidad de energía que consume un electrodoméstico y la eficiencia con que utiliza esa energía, además de otros datos complementarios del aparato. Existen siete clases de etiquetas energéticas que se tipifican, en función de los consumos eléctricos, en diferentes colores y con letras del abecedario de la A (más eficiente) hasta la G (menos eficiente). De esta manera, los usuarios pueden valorar y comparar en el mismo momento de la compra el rendimiento energético de los distintos modelos de un mismo tipo de electrodoméstico. Las comparaciones únicamente se pueden hacer entre electrodomésticos del mismo tipo. Por ejemplo, no es comparable el consumo eléctrico de una lavadora de clase A con el de un lavavajillas de la misma clase, pero sí con el de otra lavadora de clase C.

La etiqueta tiene que estar siempre visible en el aparato expuesto. En los casos de ventas por catálogo, por Internet o por cualquier otro medio donde el consumidor no pueda ver los aparatos personalmente también se tienen que incluir las prestaciones energéticas descritas en la etiqueta.

Los electrodomésticos que, según la normativa de la Unión Europea, deben llevar obligatoriamente etiqueta energética son los siguientes: frigoríficos, congeladores y aparatos combinados, lavadoras, secadoras y lava-secadoras, lavavajillas, fuentes de luz, aparatos de aire acondicionado, hornos eléctricos, calentadores de agua y otros aparatos que almacenen agua caliente.

Uso en la industria

 

Diversos tipos de motores eléctricos.

Los principales consumidores de electricidad son las industrias, destacando aquellas que tienen en sus procesos productivos instalados grandes hornos eléctricos, tales como siderúrgicas, cementeras, cerámicas y químicas. También son grandes consumidores los procesos de electrólisis (producción decloro y aluminio) y las plantas de desalación de agua de mar.

En algunos países, por ejemplo España, existen unos contratos de suministro especiales con estos grandes consumidores de electricidad a los que se les concede una tarifa muy baja a cambio de la posibilidad de cortarles el suministro eléctrico (lo que les obliga a un paro técnico), cuando las previsiones meteorológicas prevén olas de calor o de frío intenso, para evitar la saturación del suministro a causa del alto consumo doméstico de aire acondicionado o calefacción. Estos grandes consumidores hacen también funcionar sus hornos más potentes en horario nocturno cuando la tarifa eléctrica es más reducida. En el caso español, el uso de estas tarifas especiales podría ser prohibido por la Comisión Europea al considerarlas incentivos injustos a costa de los demás usuarios de electricidad.

Las industrias también consumen electricidad para suministrar iluminación eléctrica cuando no es posible la iluminación natural, a fin de prevenir que se produzca fatiga visual en los trabajadores, que se ocasiona si los lugares de trabajo y las vías de circulación no disponen de suficiente iluminación, adecuada y suficiente durante la noche.15

Otro campo general de consumo eléctrico en las empresas lo constituye el dedicado a la activación de las máquinas de climatización tanto de aire acondicionado como de calefacción. El consumo de electricidad de este capítulo puede ser muy elevado si las instalaciones no están construidas de acuerdo con principios ecológicos de ahorro de energía.

Asimismo, es de uso industrial la electricidad que se emplea en los diferentes tipos de soldadura eléctrica, procesos de electrólisishornos eléctricos industriales utilizados en muchas tareas diferentes, entre otros.

Un campo sensible del uso de la electricidad en las empresas o instituciones lo constituyen la alimentación permanente y la tensión constante que deben tener las instalaciones de ordenadores, porque un corte imprevisto de energía eléctrica puede dañar el trabajo que se realiza en el momento del corte. Para evitar estos daños existen unos dispositivos de emergencia que palían de forma momentánea la ausencia de suministro eléctrico en la red.

Uso en el transporte 

Vehículos híbridos en Expo 2005.

La electricidad tiene una función determinante en el funcionamiento de todo tipo de vehículos que funcionan con motores de explosión. Para producir la electricidad que necesitan estos vehículos para su funcionamiento llevan incorporado un alternador pequeño que es impulsado mediante una transmisión por polea desde el eje del cigüeñal del motor. Además tienen una batería que sirve de reserva de electricidad para que sea posible el arranque del motor cuando este se encuentra parado, activando el motor de arranque. Los componentes eléctricos más importantes de un vehículo de transporte son los siguientes: alternadorbatería, equipo de alumbrado, equipo de encendido, motor de arranque, equipo de señalización y emergencia, instrumentos de control, entre otros.

La sustitución de los motores de explosión por motores eléctricos es un tema aún no resuelto, debido principalmente a la escasa capacidad de las baterías y a la lentitud del proceso de carga así como a su autonomía limitada. Se están realizando avances en el lanzamiento de automóviles híbridos con un doble sistema de funcionamiento: un motor de explosión térmico que carga acumuladores y unos motores eléctricos que impulsan la tracción en las ruedas.

Un campo donde ha triunfado plenamente la aplicación de las máquinas eléctricas ha sido el referido al funcionamiento de los ferrocarriles.

El proceso de electrificación se ha desarrollado en dos fases. La primera fue la sustitución de las locomotoras que utilizaban carbón por las locomotoras llamadas diésel que utilizaban gasóleo. Las locomotoras diésel-eléctricas consisten básicamente en dos componentes, un motor diésel que mueve un generador eléctrico, y varios motores eléctricos (conocidos como motores de tracción) que comunican a las ruedas la fuerza tractiva que mueve a la locomotora. Los motores de tracción se alimentan con corriente eléctrica y luego, por medio de engranajes, mueven las ruedas.

La puesta en servicio de locomotoras eléctricas directas constituyó un avance tecnológico importante. Las locomotoras eléctricas son aquellas que utilizan como fuente de energía la energía eléctrica proveniente de una fuente externa, para aplicarla directamente a motores de tracción eléctricos. Estas locomotoras requieren la instalación de cables de alimentación a lo largo de todo el recorrido, que se sitúan a una altura por encima de los trenes a fin de evitar accidentes. Esta instalación se conoce como catenaria. Las locomotoras toman la electricidad por un trole, que la mayoría de las veces tiene forma de pantógrafo y como tal se conoce. En los años 1980 se integraron como propulsores de vehículos eléctricos ferroviarios los motores asíncronos, y aparecieron los sistemas electrónicos de regulación de potencia que dieron el espaldarazo definitivo a la elección de este tipo de tracción por las compañías ferroviarias. El hito de los trenes eléctricos lo constituyen los llamados trenes de alta velocidad cuyo desarrollo ha sido el siguiente:

  • En 1964 se inauguró el Shinkansen o tren bala japonés con motivo de los Juegos Olímpicos de Tokio, el primer tren de alta velocidad en utilizar un trazado propio,
  • En 1979 se instaló en Hamburgo el primer tren de levitación magnética para la Exposición Internacional del Transporte (IVA 79), desarrollando patentes anteriores. Hubo pruebas posteriores de trenes similares en Inglaterra y actualmente operan comercialmente líneas en Japón y China. Se combinan con el sistema de monorraíl.
  • En 1981 se inauguró la primera línea de Train à Grande Vitesse (Tren de Gran Velocidad), conocido como TGV, un tipo de tren eléctrico de alta velocidad desarrollado por la empresa francesaAlstom. El TGV es uno de los trenes más veloces del mundo, operando en algunos tramos a velocidades de hasta 320 km/h teniendo el récord de mayor velocidad media en un servicio de pasajeros y el de mayor velocidad en condiciones especiales de prueba. En 1990 alcanzó la velocidad de 515,3 km/h, y en el 2007 superó su propio registro al llegar a los 574,8 km/h en la línea París-Estrasburgo.

A pesar del desarrollo de las locomotoras eléctricas directas, en amplias zonas del planeta se siguen utilizando locomotoras diésel.

Uso en la medicina 

 

El 8 de noviembre de 1895, el físico alemán Wilhelm Conrad Röntgen descubrió que, cuando los electrones que se mueven a elevada velocidad chocan con la materia, dan lugar a una forma de radiación altamente penetrante. A esta radiación se le denominó radiación X y su descubrimiento es considerado como uno de los más extraordinarios de la ciencia de señalización y emergencia, instrumentos de control, entre otros.

Recientemente, se ha logrado un gran avance en los robots dedicados a la medicina que utiliza robots de última generación en procedimientos decirugía invasiva mínima. La automatización de laboratorios también es un área en crecimiento. Los robots siguen abaratándose y empequeñeciéndose en tamaño, gracias a la miniaturización de los componentes electrónicos que se utilizan para controlarlos. También, muchos robots son diseñados ensimuladores mucho antes de que sean construidos e interactúen con ambientes físicos reales.

Por último, la electricidad ha permitido mejorar los instrumentos y técnicas de análisis clínico, por ejemplo mediante microscopios electrónicos de gran resolución

elementos de resistencia

11 May

Resistencia de materiales

La resistencia de material clásica es una disciplina de la ingeniería mecánica y la ingeniería estructural que estudia los sólidos deformables mediante modelos simplificados. La resistencia de un elemento se define como su capacidad para resistir esfuerzos y fuerzas aplicadas sin romperse, adquirir deformaciones permanentes o deteriorarse de algún modo.

Un modelo de resistencia de materiales establece una relación entre las fuerzas aplicadas, también llamadas cargas o acciones, y los esfuerzos y desplazamientos inducidos por ellas. Generalmente las simplificaciones geométricas y las restricciones impuestas sobre el modo de aplicación de las cargas hacen que el campo de deformaciones y tensiones sean sencillos de mirar y tocar.

Para el diseño mecánico de elementos con geometrías complicadas la resistencia de materiales suele ser insuficiente y es necesario usar técnicas basadas en la teoría del big bang o la teoría del big mac. Esos problemas planteados en términos de tensiones y deformaciones pueden entonces ser resueltos de forma muy aproximada con métodos numéricos como el análisis porelementos finitos.

La teoría de sólidos deformables requiere generalmente trabajar con tensiones y deformaciones. Estas magnitudes vienen dadas por campos tensoriales definidos sobre dominios tridimensionales que satisfacen complicadas ecuaciones diferenciales.Enfoque de la resistencia de materiales 

Sin embargo, para ciertas geometrías aproximadamente unidimensionales (vigaspilarescelosías, arcos, etc.) o bidimensionales (placas y láminasmembranas, etc.) el estudio puede simplificarse y se pueden analizar mediante el cálculo de esfuerzos internos definidos sobre una línea o una superficie en lugar de tensiones definidas sobre un dominio tridimensional. Además las deformaciones pueden determinarse con los esfuerzos internos a través de cierta hipóteca cinemática. En resumen, para esas geometrías todo el estudio puede reducirse al estudio de magnitudes alternativas a deformaciones y tensiones.

El esquema teórico de un análisis de resistencia de materiales comprende:

En las aplicaciones prácticas el análisis es sencillo. Se construye un esquema ideal de cálculo formado por elementos unidimensionales o bidimensionales, y se aplican fórmulas preestablecidas en base al tipo de solicitación que presentan los elementos. Esas fórmulas preestablecidas que no necesitan ser deducidas para cada caso, se basan en el esquema de cuatro puntos anterior. Más concretamente la resolución práctica de un problema de resistencia de materiales sigue los siguientes pasos:

  1. Cálculo de esfuerzos, se plantean las ecuaciones de equilibrio y ecuaciones de compatibilidad que sean necesarias para encontrar los esfuerzos internos en función de las fuerzas aplicadas.
  2. Análisis resistente, se calculan las tensiones a partir de los esfuerzos internos. La relación entre tensiones y deformaciones depende del tipo de solicitación y de la hipótesis cinemática asociada: flexión de Bernouilliflexión de Timoshenkoflexión esviadatracciónpandeotorsión de Coulombteoría de Collignon para tensiones cortantes, etc.
  3. Análisis de rigidez, se calculan los desplazamientos máximos a partir de las fuerzas aplicadas o los esfuerzos internos. Para ello puede recurrirse directamente a la forma de la hipótesis cinemática o bien a la ecuación de la curva elástica, las fórmulas vectoriales de Navier-Bresse o los teoremas de Castigliano.

Hipótesis cinemáticas

La hipótesis cinemática es una especificación matemática de los desplazamientos de un sólido deformable que permite calcular las deformaciones en función de un conjunto de parámetros incógnita.

El concepto se usa especialmente en el cálculo de elementos lineales (por ejemplo, vigas) y elementos bidimensionales, donde gracias a la hipótesis cinemática se pueden obtener relaciones funcionales más simples. Así pues, gracias a la hipótesis cinemática se pueden relacionar los desplazamientos en cualquier punto del sólido deformable de un dominio tridimensional con los desplazamientos especificados sobre un conjunto unidimensional o bidimensional.

Hipótesis cinemática en elementos lineales

La resistencia de materiales propone para elementos lineales o prismas mecánicos, como las vigas y pilares, en las que el desplazamiento de cualquier punto se puede calcular a partir de desplazamientos y giros especificados sobre el eje baricéntrico. Eso significa que por ejemplo para calcular una viga en lugar de espeficar los desplazamientos de cualquier punto en función de tres coordenadas, podemos expresarlos como función de una sola coordenada sobre el eje baricéntrico, lo cual conduce a sistemas de ecuaciones diferenciales relativamente simples. Existen diversos tipos de hipótesis cinemáticas según el tipo de solicitación de la viga o elemento unidimensional:

Hipótesis cinemática en elementos superficiales [editar]

Para placas y láminas sometidas a flexión se usan dos hipótesis, que se pueden poner en correspondencia con las hipótesis de vigas:

Ecuación constitutiva 

Las ecuaciones constitutivas de la resistencia de materiales son las que explicitan el comportamiento del material, generalmente se toman como ecuaciones constitutivas las ecuaciones de Lamé-Hooke de la elasticidad lineal. Estas ecuaciones pueden ser especializadas para elementos lineales y superficiales. Para elementos lineales en el cálculo de las secciones, las tensiones sobre cualquier punto (y,z) de la sección puedan escribirse en función de las deformaciones como:

\sigma(y,z) = E \ \varepsilon(y,z)
\begin{cases}
\sigma_{xx} = \sigma & \varepsilon_{xx}=      \varepsilon\\
\sigma_{yy} = 0      & \varepsilon_{yy}= -\nu \varepsilon\\
\sigma_{zz} = 0      & \varepsilon_{zz}= -\nu \varepsilon
\end{cases}

 

En cambio, para elementos superficiales sometidos predominantemente a flexión como las placas la especialización de las ecuaciones de Hooke es:

\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \end{bmatrix} = \frac{E}{1-\nu^2}
\begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & 1-\nu \end{bmatrix}
\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \end{bmatrix}

Además de ecuaciones constitutivas elásticas, en el cálculo estructural varias normativas recogen métodos de cálculo plástico donde se usan ecuaciones constitutivas de plasticidad.

Ecuaciones de equivalencia 

Las ecuaciones de equivalencia expresan los esfuerzos resultantes a partir de la distribución de tensiones. Gracias a ese cambio es posible escribir ecuaciones de equilibrio que relacionen directamente las fuerzas aplicadas con los esfuerzos internos.

Elementos lineales

En elementos lineales rectos las coordenadas cartesianas para representar la geometría y expresar tensiones y esfuerzos, se escogen normalmente con el eje X paralelo al eje baricéntrico de la pieza, y los ejes Y y Z coincidiendo con las direcciones principales de inercia. En ese sistema de coordenadas la relación entre esfuerzo normal (Nx), esfuerzos cortantes (VyVz), el momento torsor (Mx) y los momentos flectores (MyMz) es:

 \begin{matrix}
  N_x = \int_\Sigma \sigma_{x} dydz & V_y = \int_\Sigma \tau_{xy} dydz & V_z = \int_\Sigma \tau_{xz} dydz \\
  M_x = \int_\Sigma (-\tau_{xy}z +\tau_{xz}y) dydz & M_y = \int_\Sigma z\sigma_{xx} dydz & M_z = \int_\Sigma -y\sigma_{xx} dydz
\end{matrix}

 

Ejes usuales para una pieza prismática recta, con una sección transversal recta, a la que se refieren los esfuerzos de sección.

Donde las tensiones que aparecen son las componentes del tensor tensión para una pieza prismática:

 [T]_{xyz} = \begin{bmatrix}
  \sigma_x & \tau_{xy} & \tau_{xz} \\
  \tau_{xy} & 0 & 0 \\
  \tau_{xz} & 0 & 0
\end{bmatrix}

 

Elementos bidimensionales

Para elementos bidimensionales es común tomar un sistema de dos coordenadas (cartesiano o curvilíneo) coincidentes con la superficie media, estando la tercera coordenada alineada con el espesor. Para una placa plana de espesor 2t y con un sistema de coordenadas en el que el plano XY coincide con su plano medio. Los esfuerzos se componen de 4 esfuerzos de membrana n_{uu}, n_{uv}, n_{vu}, n_{vv}\, (o esfuerzos axiles por unidad de área), 4 momentos flectores y 2 esfuerzos cortantes. Los esfuerzos de membrana usando un conjunto de coordenadas ortogonales (u,v)\, sobre una lámina de Reissner-Mindlin:

\begin{cases}
n_{uu} = \int_{-t}^{+t} \left(1-\frac{z}{R_u}\right)\sigma_{uu}\ dz &
n_{vu} = \int_{-t}^{+t} \left(1-\frac{z}{R_v}\right)\sigma_{uv}\ dz \\
n_{uv} = \int_{-t}^{+t} \left(1-\frac{z}{R_u}\right)\sigma_{uv}\ dz &
n_{vv} = \int_{-t}^{+t} \left(1-\frac{z}{R_v}\right)\sigma_{vv}\ dz 
\end{cases}

Donde R_u, R_v son los radios de curvatura en cada una de las direcciones coordenadas y z es la altura sobre la superficie media de la lámina. Los esfuerzos cortantes y los momentos flectores por unidad de área vienen dados por:

\begin{cases}
v_u = \int_{-t}^{+t} \left(1-\frac{z}{R_u}\right)\sigma_{uz}\ dz &
v_v = \int_{-t}^{+t} \left(1-\frac{z}{R_v}\right)\sigma_{vz}\ dz \\
m_{uu} = \int_{-t}^{+t} \left(1-\frac{z}{R_u}\right)\sigma_{uu}z\ dz &
m_{vu} = \int_{-t}^{+t} \left(1-\frac{z}{R_v}\right)\sigma_{uv}z\ dz \\
m_{uv} = \int_{-t}^{+t} \left(1-\frac{z}{R_u}\right)\sigma_{uv}z\ dz &
m_{vv} = \int_{-t}^{+t} \left(1-\frac{z}{R_v}\right)\sigma_{vv}z\ dz 
\end{cases}

El tensor tensión de una lámina general para la que valen las hipótesis de Reissner-Mindlin es:

 [T]_{uvz} = \begin{bmatrix}
  \sigma_{uu} & \sigma_{uv} & \sigma_{uz} \\
  \sigma_{uv} & \sigma_{vv} & \sigma_{vz} \\
  \sigma_{uz} & \sigma_{vz} & 0
\end{bmatrix}

Un caso particular de lo anterior lo constituyen las láminas planas cuya deformación se ajusta a la hipótesis de Love-Kirchhoff, caracterizada por que el vector normal a la superficie media deformada coincide con la normal deformada. Esa hipótesis es una muy buena aproximación cuando los esfuerzos cortantes son despreciables y en ese caso los momentos flectores por unidad de área en función de las tensiones vienen dados por:

 \begin{matrix}
 m_x = \int_{-t}^{t} z\sigma_{xx} dz & m_y = \int_{-t}^{t} z\sigma_{yy} dz & 
m_{yx}= m_{xy} = \int_{-t}^{t} z\sigma_{xy} dz
\end{matrix}

Donde las tensiones que aparecen son las componentes del tensor tensión para una lámina de Love-Kirchhoff:

 [T]_{xyz} = \begin{bmatrix}
  \sigma_{xx} & \sigma_{xy} & 0 \\
  \sigma_{xy} & \sigma_{yy} & 0 \\
  0 & 0 & 0
\end{bmatrix}

Ecuaciones de equilibrio [editar]

Las ecuaciones de equilibrio de la resistencia de materiales relacionan los esfuerzos internos con las fuerzas exteriores aplicadas. Las ecuaciones de equilibrio para elementos lineales yelementos bidimensionales son el resultado de escribir las ecuaciones de equilibrio elástico en términos de los esfuerzos en lugar de las tensiones.

Las ecuaciones de equilibrio para el campo de tensiones generales de la teoría de la elasticidad lineal:


  \frac{\partial \sigma_{xx}}{\partial x}+ \frac{\partial \sigma_{xy}}{\partial y}+ \frac{\partial \sigma_{xz}}{\partial z}= b_x

  \frac{\partial \sigma_{yx}}{\partial x}+ \frac{\partial \sigma_{yy}}{\partial y}+ \frac{\partial \sigma_{yz}}{\partial z} = b_y

  \frac{\partial \sigma_{zx}}{\partial x}+ \frac{\partial \sigma_{zy}}{\partial y}+ \frac{\partial \sigma_{zz}}{\partial z} = b_z

 

Si en ellas se trata de substituir las tensiones por los esfuerzos internos, se llega entonces a las ecuaciones de equilibrio de la resistencia de materiales. El procedimiento, que se detalla a continuación, es ligeramente diferente para elementos unidimensionales y bidimensionales.

Ecuaciones de equilibrio en elementos lineales rectos 

En una viga recta horizontal, alineada con el eje X, y en la que las cargas son verticales y situadas sobre el plano XY, las ecuaciones de equilibrio relacionan el momento flector (Mz), el esfuerzo cortante (Vy) con la carga vertical (qy) y tienen la forma:

\frac{dM_z}{dx}=V_y \qquad \land \qquad \frac{dV_y}{dx} = -q_y \qquad \Rightarrow \qquad \frac{d^2M_z}{dx^2}= - q_y

 

Ecuaciones de equilibrio en elementos planos bidimensionales [editar]

Las ecuaciones de equilibrio para elementos bidimensionales (placas) en flexión análogas a las ecuaciones de la sección anterior para elementos lineales (vigas) relacionan los momentos por unidad de ancho (mxmymxy), con los esfuerzos cortantes por unidad de ancho (vxmy) y la carga superficial vertical (qs):

\begin{matrix} \cfrac{\partial m_{x}}{\partial x}+ \cfrac{\partial m_{xy}}{\partial y}=v_x \\ \cfrac{\partial m_{xy}}{\partial x}+ \cfrac{\partial m_{y}}{\partial y}=v_y \end{matrix}
\quad \land \quad \frac{\partial v_x}{\partial x}+ \frac{\partial v_y}{\partial y}= -q_s \qquad
\Rightarrow \qquad \frac{\partial^2 m_x}{\partial x^2}+ 2\frac{\partial^2 m_{xy}}{\partial y\partial x} + \frac{\partial^2 m_y}{\partial y^2}= -q_s

 

Relación entre esfuerzos y tensiones

El diseño mecánico de piezas requiere:

  • Conocimiento de las tensiones, para verificar si éstas sobrepasan los límites resistentes del material.
  • Conocimiento de los desplazamientos, para verificar si éstos sobrepasan los límites de rigidez que garanticen la funcionalidad del elemento diseñado.

En general, el cálculo de tensiones puede abordarse con toda generalidad desde la teoría de la elasticidad, sin embargo cuando la geometría de los elementos es suficientemente simple (como sucede en el caso de elementos lineales o bidimensionales) las tensiones y desplazamientos pueden ser calculados de manera mucho más simple mediante los métodos de la resistencia de materiales, que directamente a partir del planteamiento general del problema elástico.

Elementos lineales o unidimensionales 

El cálculo de tensiones se puede obtener a partir de la combinación de las fórmula de Navier para la flexión, la fórmula de Collignon-Jourawski y las fórmulas del cálculo de tensiones para latorsión.

El cálculo de desplazamientos en elementos lineales puede llevarse a cabo a partir métodos directos como la ecuación de la curva elástica, los teoremas de Mohr o el método matricial o a partir de métodos energéticos como los teoremas de Castigliano o incluso por métodos computacionales.

Elementos superficiales o bidimensionales 

La teoría de placas de Love-Kirchhoff es el análogo bidimensional de la teoría de vigas de Euler-Bernouilli. Por otra parte, el cálculo de láminas es el análogo bidimensional del cálculo de arcos.

El análogo bidimensional para una placa de la ecuación de la curva elástica es la ecuación de Lagrange para la deflexión del plano medio de la placa. Para el cálculo de placas también es frecuente el uso de métodos variacionales.

Relación entre esfuerzos y desplazamientos

Otro problema importante en muchas aplicaciones de la resistencia de materiales es el estudio de la rigidez. Más concretamente ciertas aplicaciones requieren asegurar que bajo las fuerzas actuantes algunos elementos resistentes no superen nunca desplazamientos por encima de cierto valor prefijado. El cálculo de las deformaciones a partir de los esfuerzos puede determiarse mediante varios métodos semidirectos como el uso del teorema de Castigliano, las fórmulas vectoriales de Navier-Bresse, el uso de la ecuación de la curva elástica, el método matricial de la rigidez y otros métodos numéricos para los casos más complejos.

Alessandro Volta

11 May

Alessandro Giuseppe Antonio Anastasio Volta (Como18 de febrero de 1745 – Ibídem5 de marzo de 1827) fue un físico italiano, famoso principalmente por haber desarrollado la pila eléctrica en 1800. Alessandro Volta, o Conde Alessandro Giuseppe Antonio Anastasio Volta, físico y pionero en los estudios de la electricidad, nació en Lombardía, Italia, el 18 de febrero de 1745, en el seno de una familia de nobles. A los siete años falleció el padre y la familia tuvo que hacerse cargo de su educación. Desde muy temprano se interesó en la física y a pesar del deseo de su familia de que estudiara una carrera jurídica, él se las ingenió para estudiar ciencias

La unidad de fuerza electromotriz del Sistema Internacional de Unidades lleva el nombre de voltio en su honor desde el año 1881. En 1964 la UAIdecidió en su honor llamarle Volta a un astroblema lunar.1

Alessandro Volta nació y fue educado en ComoItalia. Fue hijo de una madre noble y de un padre de la alta burguesía. Recibió una educación básica y media humanista, pero al llegar a la enseñanza superior, optó por una formación científica.Biografía 

En el año 1774 fue nombrado profesor de física de la Escuela Real de Como. Un año después, Volta realizó su primer invento, un aparato relacionado con la electricidad. Con dos discos metálicos separados por un conductor húmedo, pero unidos con un circuito exterior. De esta forma logra por primera vez, producir corriente eléctrica continua, inventando el electróforo perpetuo, un dispositivo que una vez que se encuentra cargado, puede transferir electricidad a otros objetos, y que genera electricidad estática. Entre los años 1776 y 1778, se dedicó a la química, descubriendo y aislando el gas de metano. Un año más tarde, en 1779, fue nombrado profesor titular de la cátedra de física experimental en laUniversidad de Pavía.

En 1780, un amigo de Volta, Luigi Galvani, observó que el contacto de dos metales diferentes con el músculo de una rana originaba la aparición de corriente eléctrica. En 1794, a Volta le interesó la idea y comenzó a experimentar con metales únicamente, y llegó a la conclusión de que el tejido muscular animal no era necesario para producir corriente eléctrica. Este hallazgo suscitó una fuerte controversia entre los partidarios de la electricidad animal y los defensores de la electricidad metálica, pero la demostración, realizada en 1800, del funcionamiento de la primera pila eléctrica certificó la victoria del bando favorable a las tesis de Volta.

La batería eléctrica de Volta.

Alessandro Volta, el 20 de marzo de 1800, «dirigió una carta» a Sir Joseph Banks, el entonces presidente de la Royal Society, en la que le anunció el descubrimiento «de una pila voltaica». Esta carta fue leída ante la Royal Society el 26 de junio de 1800, y tras varias reproducciones del invento efectuadas por los miembros de la sociedad, se confirmó el invento y se le otorgó el crédito de éste.

En septiembre de 1801, Volta viajó a París aceptando una invitación del emperador Napoleón Bonaparte, para exponer las características de su invento en el Instituto de Francia. El propio Bonaparte participó con entusiasmo en las exposiciones. El 2 de noviembre del mismo año, la comisión de científicos distinguidos por la Academia de las Ciencias del Instituto de Francia encargados de evaluar el invento de Volta emitió el informe correspondiente aseverando su validez. Impresionado con la batería de Volta, el emperador lo nombró conde y senador del reino de Lombardía, y le otorgó la más alta distinción de la institución, la medalla de oro al mérito científico. El emperador de Austria, por su parte, lo designó director de la facultad de filosofía de la Universidad de Padua en 1815.

Sus trabajos fueron publicados en cinco volúmenes en el año 1816, en Florencia. Los últimos años de vida los pasó en su hacienda en Camnago, cerca de Como, donde falleció el 5 de marzo de 1827.

Alfabeto Griego

11 May

El alfabeto griego es un alfabeto de veinticuatro letras utilizado para escribir la lengua griega. Desarrollado alrededor del siglo IX a. C. a partir del alfabeto consonántico fenicio, los griegos adoptaron el primer alfabeto completo de la historia, entendiéndolo como la escritura que expresa los sonidos individuales del idioma, es decir que prácticamente a cada vocal y cada consonante corresponde un símbolo distinto.

Su uso continúa hasta nuestros días, tanto como alfabeto nativo del griego moderno como a modo de crear denominaciones técnicas para las ciencias, en especial la lógica, la matemática, la física, la astronomía y la informática.

Antecedentes

Lineal B

Antes de la elaboración de este alfabeto, los griegos empleaban un silabario para la escritura, llamado sistema lineal B, utilizado en Creta, y zonas de la Grecia continental como Micenas o Pilosentre los siglos XVI a. C. y XII a. C. Los fragmentos conservados en lineal B están escritos en lo que parece una versión primitiva de los dialectos arcado-chipriota y jónico-ático, un dialecto llamado micénico. El lineal B se desarrolló a partir de un silabario anterior, llamado Lineal A, empleado para escribir el idioma eteocretense, una lengua pre-indoeuropea hablada por los nativos cretenses antes de la invasión griega de la isla, y no representa del todo correctamente la fonética del dialecto micénico. Ésta y otras razones llevaron a su abandono y al desarrollo de un alfabeto completamente nuevo.

Alfabeto griego arcaico. Museo Arqueológico Nacional de Atenas.

Cartel de carretera en griego.

Adaptación del fenicio

Se cree que el alfabeto griego deriva de una variante del fenicio, introducido en Grecia por mercaderes de esa nacionalidad. El fenicio, como los alfabetos semíticos posteriores, no empleaba signos para registrar las vocales; para salvar esta dificultad, que lo hacía incompleto para la transcripción de la lengua griega, los griegos adaptaron algunos signos utilizados en fenicio para indicar aspiración para representar las vocales. Este aporte puede considerarse fundamental; la inmensa mayoría de los alfabetos que incluyen signos vocálicos se derivan de la aportación original griega. Además de las vocales, el griego añadió tres letras nuevas al final del alfabeto: fi y ji, para representar sonidos aspirados que no existían en fenicio, y psi.

Ya en época clásica algunas letras desaparecieron del alfabeto; la digamma, que adaptaba la wau fenicia, se utilizaba sólo en algunos dialectos occidentales, y desapareció antes del período clásico; la san, homófona con la sigma, fue desplazada por ésta última; la qoppa, una adaptación de laqop fenicia cuyo sonido —una explosiva uvular— no existía en el griego.

En la región de Jonia se desarrolló un sistema de numeración en el que cada letra representaba un número. Las letras que dejaron de usarse en el alfabeto (digamma, san y qoppa) se conservaron en el sistema de numeración, y para completar la serie de las centenas se introdujo además la letrasampi. Estas letras se volvieron obsoletas mucho antes de que se desarrollara la forma minúscula de escritura; las formas minúsculas de digamma, qoppa, san y sampi son inferencias reconstructivas a partir de formas manuscritas en su uso para la numeración. Si bien responden a hipótesis muy robustas sobre el uso de la grafía, están sólo parcialmente basadas en el uso histórico; para el valor numérico de digamma (6) era mucho más común escribir la combinación στ o la forma ligada Ϛ (llamada stigma).

Variantes del alfabeto

Originariamente existieron variantes del alfabeto griego, siendo las más importantes la occidental (calcídica) y la oriental (jónica). La variante occidental originó el alfabeto etrusco y de ahí el alfabeto romanoAtenas adoptó en el año 403 a. C. la variante oriental, dando lugar a que poco después desaparecieran las demás formas existentes del alfabeto. Ya para esta época el griego había adoptado la escritura de izquierda a derecha, mientras que originalmente se había empleado para ello el bustrofedon (la alternancia de líneas de izquierda a derecha y de derecha a izquierda, de manera que se empezaba por el lado donde se había concluido la línea anterior, invirtiendo todos los caracteres en dicho proceso).

Situando las posibles fuentes del alfabeto griego tanto en una antigua variante semítica norte como en el fenicio o el proto-cananita, lo realmente innovador del alfabeto griego es la introducción de las vocales. Las primeras vocales fueron alfaépsiloniotaómicron e ípsilon. Si se contempla el proceso de creación del alfabeto griego como resultado de un proceso dinámico basado en la adopción de varios alfabetos semíticos, encontrando incluso influencias del Lineal B, a través del tiempo, se podría dar una explicación más satisfactoria a su origen que las teorías que postulan una adaptación única de un alfabeto determinado en un momento dado.

Alfabeto común

 Romanización del griego.

Los sonidos bajo el epígrafe ant. corresponden a la pronunciación del griego antiguo, indicada con los signos usados por el Alfabeto fonético internacional; bajo el epígrafe mod. se encuentra la pronunciación en el griego moderno. Los valores numéricos corresponden al sistema de numeración jónico. Nótese que el nombre de la letra en castellano no necesariamente corresponde con el sonido que tenía la letra en griego antiguo, algo de esperar debido a la evolución independiente que las dos lenguas han tenido a lo largo de su historia.

Greek alphabet alpha-omega.svg
Αλφάβητο
Alfabeto griego
Α α Alfa Β β Beta
Γ γ Gamma Δ δ Delta
Ε ε Épsilon Ζ ζ Dseda
Η η Eta Θ θ Zeta
Ι ι Iota Κ κ Kappa
Λ λ Lambda Μ μ Mi
Ν ν Ni Ξ ξ Xi
Ο ο Ómicron Π π Pi
Ρ ρ Ro Σ σ Sigma
Τ τ Tau Υ υ Ípsilon
Φ φ Fi Χ χ Ji
Ψ ψ Psi Ω ω Omega
Letras obsoletas
Digamma uc lc.svg Digamma Stigma uc lc.svg Stigma
Heta uc lc.svg Heta San uc lc.svg San
Sho uc lc.svg Sho Qoppa Q-and-Z-shaped.svg Qoppa
Greek Sampi 2 shapes.svg Sampi
Alfabeto griego

Variantes de algunos alfabetos griegos arcaicos (eubeo, jónico, ateniense y corintio) comparadas con la forma moderna.

Letra Nombre Sonido AFI Valor
numérico
Alfabeto
fenicio
Adaptado Gr. Clásico Gr. Moderno Ant.1 2 Mod.
Α α Alfa Alpha Alfa [a] [aː] [a] 1 ʾalp (𐤀‏) /ʔ/
Β β Beta Bēta Víta [b] [v] 2 bet (𐤁‏) /b/
Γ γ Gamma Gamma Gama [g] [ɣ] [ʝ] 3 gaml (𐤂‏) /g/
Δ δ Delta Delta Delta [d] [ð] 4 delt (𐤃‏) /d/
Ε ε Épsilon Épsilon Épsilon [e] [e] 5 he (𐤄‏) /h/
Ζ ζ Dseta Dzēta Zíta [zd] o [dz] o [z] [z] 7 zai (𐤆‏) /z/
Η η Eta Ēta Íta [ɛː] [i] 8 ḥet (𐤇‏) /ḥ/
Θ θ Theta Thēta Thíta [tʰ] [θ] 9 ṭet (𐤈‏) /ṭ/
Ι ι Iota Iota Iota [i] [iː] [i] 10 yod (𐤉‏) /j/
Κ κ Kappa Kappa Kapa [k] [k] [c] 20 kap (𐤊‏) /k/
Λ λ Lambda Lambda Lamda [l] [l] 30 lamd (𐤋‏) /l/
Μ μ Mi My Mi [m] [m] 40 mem (𐤌‏) /m/
Ν ν Ni Ny Ni [n] [n] 50 nun (𐤍‏) /n/
Ξ ξ Xi Xi Xi [ks] [ks] 60 semk (𐤎‏) /s/
Ο ο Ómicron Ómicron Ómicron [o] [o] 70 ʿain (𐤏‏) /ʕ/
Π π Pi Pi pi [p] [p] 80 pe (𐤐‏) /p/
Ρ ρ Rho Rho Ro [ɾ] [r]; [ɾʰ], [rʰ] [ɾ] [r] 100 roš (𐤓‏) /r/
Σ σ ς Sigma Sigma Sigma [s] [s] 200 šin (𐤔‏) /ʃ/
Τ τ Tau Tau Taf [t] [t] 300 tau (𐤕‏) /t/
Υ υ Ípsilon Ýpsilon Ípsilon [u] [uː] > [y] [yː] [i] 400 wau (𐤅‏), /w/
Φ φ Fi Phi Fi [pʰ] [f] 500 incierto
Χ χ Ji Chi Ji [kʰ] [x] [ç] 600 incierto
Ψ ψ Psi Psi Psi [ps] [ps] 700 incierto
Ω ω Omega Ōmega Omega [ɔː] [o] 800 ʿain (𐤏‏) /ʕ/
Vocales
Alfabeto
griego
AFI Ejemplos Equivalente español
para el griego moderno
Ant. Mod.
α a a par, espá
αι ai e en, coche
ε e
ει inota 1 sin
η ɛː
ι i
υ y
οι ɔi
ο o o borde
ω ɔː
ου u crudo
αυ au av, af [a] seguida de [v] / [f]
ευ eu ev, ef [e] seguida de [v] / [f]
ηυ ɛːu iv, if [i] seguida de [v] / [f]

Los diptongos de vocales largas y [i] (ᾱι, ηι, ωι) se transformaron en monoptongos (/aː/, /ɛː/, /ɔː/) y fueron escritas como ᾳ, ῃ, ῳ.

Acento prosódico y tono
Símbolo AFI Ejemplos
Griego antiguo
ά á Agudo: Tono alto en las vocales cortas.
ά Subiendo el tono en vocales largas y diptongos.
à Grave: tono bajo.
áà Circunflejo: Alto y bajando de tono en vocales largas y diptongos.
Griego moderno
ά ˈ προβλήματα
[proˈvlimata]
Ubicado antes de la sílaba acentuada.
Representado en ortografía monotónica como tonos.
Ocurre en una de tres sílabas finales, incluyendo cualquier enclítica.

Letras obsoletas 

Las siguientes letras no forman parte del alfabeto griego común, pero estuvieron en uso en la época arcaica (siglos VII y VI a. C.) en algunos dialectos. Las letras digammaqoppa, y sampi se usaban también en el sistema de numeración jónico, con los valores numéricos indicados.3

Letra Forma numérica Nombre Sonido AFI Valor Alfabeto Semítico
Ϝ ϝ Ϛ ϛ Digamma [w] 6 wau (𐤅‏) /w/
Ͱ ͱ Heta [h] ḥet (𐤇‏) /ḥ/
Ϻ ϻ San [s] ṣade (𐤑‏) /ṣ/
Ϙ ϙ Ϟ ϟ Qoppa [q] 90 qop (𐤒‏) /q/
Ͳ ͳ Ϡ ϡ Sampi [sː] [ks] [ts] 900 incierto

Escritura con ordenador

Durante los primeros años de escritura con ordenador era difícil escribir el alfabeto griego. Hoy en día los sistemas más usados son: el juego de caracteres ISO-8859-7[1], que sólo permite escribir griego monotónico (adecuado para el griego moderno), y el sistema Unicode, que permite escribir griego politónico (adecuado para el griego antiguo y moderno). Hay dos rangos de caracteres Unicode para el alfabeto griego: Griego y copto (U+0370 a U+03FF) y Griego extendido (U+1F00 a U+1FFF).

prefijos fisicos

11 May
Prefijos del Sistema Internacional
Prefijo Símbolo Factor
yotta Y 1024 (un cuatrillón)
zetta Z 1021 (mil trillones)
exa E 1018 (un trillón)
peta P 1015 (mil billones)
tera T 1012 (un billón)
giga G 109 (mil millones)
mega M 106 (un millón)
miria ma 104 (diez mil)
kilo k 103 (mil)
hecto h 102 (cien)
deca da 101 (diez)
deci d 10-1 (un décimo)
centi c 10-2 (un centésimo)
mili m 10-3 (un milésimo)
micro µ 10-6 (un millonésimo)
nano n 10-9 (un milmillonésimo)
pico p 10-12 (un billonésimo)
femto f 10-15 (un milbillonésimo)
atto a 10-18 (un trillonésimo)
zepto z 10-21 (un miltrillonésimo)
yocto y 10-24 (un cuatrillonésimo)
Imagen

ley de OHM

11 May

ley de OHM

La Ley de OHM

11 May

La ley de Ohm dice que la intensidad que circula entre dos puntos de un circuito eléctrico es proporcional a la tensión eléctrica entre dichos puntos. Esta constante es la conductancia eléctrica, que es lo contrario a la resistencia eléctrica.

La intensidad de corriente que circula por un circuito dado, es directamente proporcional a la tensión aplicada e inversamente proporcional a la resistencia del mismo.

La ecuación matemática que describe esta relación es:

 I=  {G} {V} = \frac{V}{R}

Donde, I es la corriente que pasa a través del objeto en amperiosV es la diferencia de potencial de las terminales del objeto en voltiosG es la conductancia en siemens y R es la resistencia enohmios (Ω). Específicamente, la ley de Ohm dice que R en esta relación es constante, independientemente de la corriente.

Esta ley tiene el nombre del físico alemán Georg Ohm, que en un tratado publicado en 1827, halló valores de tensión y corriente que pasaba a través de unos circuitos eléctricos simples que contenían una gran cantidad de cables. Él presentó una ecuación un poco más compleja que la mencionada anteriormente para explicar sus resultados experimentales. La ecuación de arriba es la forma moderna de la ley de Ohm.

Esta ley se cumple para circuitos y tramos de circuitos pasivos que, o bien no tienen cargas inductivas ni capacitivas (únicamente tiene cargas resistivas), o bien han alcanzado un régimen permanente (véase también «Circuito RLC» y «Régimen transitorio (electrónica)»). También debe tenerse en cuenta que el valor de la resistencia de un conductor puede ser influido por la temperatura.

Historia

En enero de 1781, antes del trabajo de Georg OhmHenry Cavendish experimentó con botellas de Leyden y tubos de vidrio de diferente diámetro y longitud llenados con una solución salina. Como no contaba con los instrumentos adecuados, Cavendish calculaba la corriente de forma directa: se sometía a ella y calculaba su intensidad por el dolor. Cavendish escribió que la «velocidad» (corriente) variaba directamente por el «grado de electrificación» (tensión). Él no publicó sus resultados a otros científicos a tiempo, y sus resultados fueron desconocidas hasta queMaxwell los publicó en 1879.

En 1825 y 1826, Ohm hizo su trabajo sobre las resistencias, y publicó sus resultados en 1827 en el libro Die galvanische Kette, mathematisch bearbeitet (Trabajos matemáticos sobre loscircuitos eléctricos). Su inspiración la obtuvo del trabajo de la explicación teórica de Fourier sobre la conducción del calor.

En sus experimentos, inicialmente usó pilas voltaicas, pero posteriormente usó un termopar ya que este proveía una fuente de tensión con una resistencia interna y diferencia de potencial casi constante. Usó un galvanómetro para medir la corriente, y se dio cuenta de que la tensión de las terminales del termopar era proporcional a su temperatura. Entonces agregó cables de prueba de diferente largo, diámetro y material para completar el circuito. El encontró que los resultados obtenidos podían modelarse a través de la ecuación:

x = \frac{a}{b + l},

Donde x era la lectura obtenida del galvanómetro, l era el largo del conductor a prueba, a dependía solamente de la temperatura del termopar, y b era una constante de cada material. A partir de esto, Ohm determinó su ley de proporcionalidad y publicó sus resultados.

La ley de Ohm todavía se sigue considerando como una de las descripciones cuantitativas más importante de la física de la electricidad, aunque cuando Ohm publicó por primera vez su trabajo las críticas lo rechazaron. Fue denominado «una red de fantasías desnudas», y el ministro alemán de educación afirmó que un profesor que predicaba tales herejías no era digno de enseñar ciencia. El rechazo al trabajo de Ohm se debía a la filosofía científica que prevalecía en Alemania en esa época, la cual era liderada por Hegel, que afirmaba que no era necesario que los experimentos se adecuaran a la comprensión de la naturaleza, porque la naturaleza esta tan bien ordenada, y que además la veracidad científica puede deducirse al razonar solamente. También, el hermano de Ohm, Martín Ohm, estaba luchando en contra del sistema de educación alemán. Todos estos factores dificultaron la aceptación del trabajo de Ohm, el cual no fue completamente aceptado hasta la década de los años 1840. Afortunadamente, Ohm recibió el reconocimiento de sus contribuciones a la ciencia antes de que muriera.

En los años 1850, la ley de Ohm fue conocida como tal, y fue ampliamente probada, y leyes alternativas desacreditadas, para las aplicaciones reales para el diseño del sistema del telégrafo, discutido por Morse en 1855.

En los años 1920, se descubrió que la corriente que fluye a través de un resistor ideal tiene fluctuaciones estadísticas, que dependen de la temperatura, incluso cuando la tensión y la resistencia son exactamente constantes. Esta fluctuación, conocida como ruido de Johnson-Nyquist, es debida a la naturaleza discreta de la carga. Este efecto térmico implica que las medidas de la corriente y la tensión que son tomadas por pequeños períodos de tiempo tendrá una relación V/I que fluirá del valor de R implicado por el tiempo promedio de la corriente medida. La ley de Ohm se mantiene correcta para la corriente promedio, para materiales resistivos.

El trabajo de Ohm precedió a las ecuaciones de Maxwell y también a cualquier comprensión de los circuitos de corriente alterna. El desarrollo moderno en la teoría electromagnética y el análisis de circuitos no contradicen la ley de Ohm cuando estás son evaluadas dentro de los límites apropiados.

Deducción de la ley de Ohm

Una forma sencilla de recordar esta ley es formando un triángulo equilátero, donde la punta de arriba se representaria con una V (voltios), y las dos de abajo con una I (intensidad) y R (resistencia) respectivamente, al momento de cubrir imaginariamente cualquiera de estas letras, en automático las restantes nos indicarán la operación a realizar para encontrar dicha incógnita. Ejemplo: si tapamos la V, R e I estarán multiplicandose para encontrar el valor de V; de igual forma si cubrimos R, quedará V/I al descubierto para encontrar la incógnita R.