Electromagnetismo

24 Oct

El electromagnetismo es una rama de la física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron sentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética), conocidas como ecuaciones de Maxwell.
El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales o tensoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable sólo a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de éstas, el electromagnetismo no describe los fenómenos atómicos y moleculares, para los que es necesario usar la mecánica cuántica.
El electromagnetismo considerado como fuerza es una de las cuatro fuerzas fundamentales del universo actualmente conocido.

Magnetostática

Líneas de fuerza de una barra magnética.

No fue sino hasta el año de 1820, cuando Hans Christian Ørsted descubrió que el fenómeno magnético estaba ligado al eléctrico, que se obtuvo una teoría científica para el magnetismo.7 La presencia de una corriente eléctrica, o sea, de un flujo de carga debido a unadiferencia de potencial, genera una fuerza magnética que no varía en el tiempo. Si tenemos una carga a una velocidad \ \vec v, ésta generará un campo magnético \ \vec B que es perpendicular a la fuerza magnética inducida por el movimiento en esta corriente, así:

\vec F = q \vec v \times \vec B

Para determinar el valor de ese campo magnético, Jean Baptiste Biot en 1820,8 dedujo una relación para corrientes estacionarias, ahora conocida como ley de Biot-Savart:

\vec B = \frac{\mu_0 I}{4 \pi} \oint_c {\frac{d\vec l \times \vec r}{r^3}}

Donde \mu_0\, es un coeficiente de proporcionalidad conocido como permeabilidad magnéticaI\, es la intensidad de corriente, el d\vec l es el diferencial de longitud de la corriente y \vec r es la dirección de la corriente. De manera más estricta, \vec B es la inducción magnética, dicho en otras palabras, es el flujo magnético por unidad de área. Experimentalmente se llegó a la conclusión que las líneas de fuerza de campos magnéticos eran cerradas, eliminando la posibilidad de un monopolo magnético. La relación matemática se la conoce como ley de Gauss para el campo magnético:

(2)

\oint_S \vec B \cdot d\vec S = 0

Además en la magnetostática existe una ley comparable a la de Gauss en la electrostática, la ley de Ampère. Ésta ley nos dice que la circulación en un campo magnético es igual a la densidad de corriente que exista en una superficie cerrada:

\oint_c \vec B \cdot d\vec l = \mu_0 I

Cabe indicar que esta ley de Gauss es una generalización de la ley de Biot-Savart. Además que las fórmulas expresadas aquí son para cargas en el vacío, para más información consúltese los artículos principales.

 

Electrodinámica clásica

Hasta el momento se han estudiado los campos eléctricos y magnéticos que no varían con el tiempo. Pero los físicos a finales del siglo XIX descubrieron que ambos campos estaban ligados y así un campo eléctrico en movimiento, una corriente eléctrica que varíe, genera un campo magnético y un campo magnético de por si implica la presencia de un campo eléctrico. Entonces, lo primero que debemos definir es la fuerza que tendría una partícula cargada que se mueva en un campo magnético y así llegamos a la unión de las dos fuerzas anteriores, lo que hoy conocemos como la fuerza de Lorentz:

\vec F = q(\vec E + \vec v \times \vec B)

Entre 1890 y 1900 Liénard y Wiechert calcularon el campo electromagnético asociado a cargas en movimiento arbitrario, resultado que se conoce hoy como potenciales de Liénard-Wiechert.

Por otro lado, para generar una corriente eléctrica en un circuito cerrado debe existir una diferencia de potencial entre dos puntos del circuito, a ésta diferencia de potencial se la conoce comofuerza electromotriz o fem. Ésta fuerza electromotriz es proporcional a la rapidez con que el flujo magnético varía en el tiempo, esta ley fue encontrada por Michael Faraday y es la interpretación de la inducción electromagnética, así un campo magnético que varía en el tiempo induce a un campo eléctrico, a una fuerza electromotriz. Matemáticamente se representada como:

 

\oint_C \vec{E} \cdot d\vec{l} = - \frac{d}{dt}\int_S \vec B \cdot d\vec S

En un trabajo del físico James Clerk Maxwell de 1861 reunió las tres ecuaciones anteriormente citadas (1), (2) y (4) e introdujo el concepto de una corriente de desplazamiento como una densidad de corriente efectiva y llegó a la última de las ecuaciones, la ley de Ampère generalizada (5), ahora conocidas como ecuaciones de Maxwell:

 

\oint_C \vec{B} \cdot d\vec{l} = \mu_0 \int_S \vec{j} \cdot d\vec{S} + \mu_0 \epsilon_0 \frac{d}{dt} \int_S \vec{E} \cdot d\vec{S}

Las cuatro ecuaciones, tanto en su forma diferencial como en la integral aquí descritas, fueron las revisiones hechas por Oliver Heaviside. Pero el verdadero poder de éstas ecuaciones, más la fuerza de Lorentz (3), se centra en que juntas son capaces de describir cualquier fenómeno electromagnético, además de las consecuencias físicas que posteriormente se describirán.

 

Esquema de una onda electromagnética.

La genialidad del trabajo de Maxwell es que sus ecuaciones describen un campo eléctrico que va ligado inequívocamente a un campo magnético perpendicular a éste y a la dirección de su propagación, éste campo es ahora llamado campo electromagnético.10 Además la solución de éstas ecuaciones permitía la existencia de una onda que se propagaba a la velocidad de la luz, con lo que además de unificar los fenómenos eléctricos y magnéticos la teoría formulada por Maxwell predecía con absoluta certeza los fenómenos ópticos.

Así la teoría predecía a una onda que, contraria a las ideas de la época, no necesitaba un medio de propagación; la onda electromagnética se podía propagar en el vacío debido a la generación mutua de los campos magnéticos y eléctricos. Esta onda a pesar de tener una velocidad constante, la velocidad de la luz c, puede tener diferente longitud de onda y consecuentemente dicha onda transporta energía. La radiación electromagnética recibe diferentes nombres al variar su longitud de onda, como rayos gammarayos Xespectro visible, etc.; pero en su conjunto recibe el nombre de espectro electromagnético.

Formulación covariante
Clásicamente, al fijar un sistema de referencia, se puede descomponer los campos eléctricos y magnéticos del campo electromagnético. Pero al tener a un observador con movimiento relativo respecto al sistema de referencia, éste medirá efectos eléctricos y magnéticos diferentes de un mismo fenómeno electromagnético. El campo eléctrico y la inducción magnética a pesar de ser elementos vectoriales no se comportan como magnitudes físicas vectoriales, por el contrario la unión de ambos constituye otro ente físico llamado tensor y en este caso el tensor de campo electromagnético.

Así, la expresión para el campo electromagnético es:

\mathbf{F} = F_{\mu \nu} =
\begin{pmatrix}
0 & E_x/c & E_y/c & E_z/c \\
-E_x/c & 0 & -B_z & B_y \\
-E_y/c & B_z & 0 & -B_x \\
-E_z/c & -B_y & B_x & 0
\end{pmatrix}

Y las expresiones covariantes para las ecuaciones de Maxwell (7) y la fuerza de Lorentz (6) se reducen a:

\ f_{\alpha} = \sum_{\beta} e \ F_{\alpha \beta} \ u^{\beta} \,

\ \partial_{\mu} F^{\mu \nu} = \mu_0 J^{\nu} \partial_\mu \cdot F^{\mu \nu} = 0

Electrodinámica cuántica

 

Diagrama de Feynman mostrando la fuerza electromagnética entre dos electrones por medio del intercambio de un fotón virtual.

Artículo principal: Electrodinámica cuántica.

Posteriormente a la revolución cuántica de inicios del siglo XX, los físicos se vieron forzados a buscar una teoría cuántica de lainteracción electromagnética. El trabajo de Einstein con el efecto fotoeléctrico y la posterior formulación de la mecánica cuánticasugerían que la interacción electromagnética se producía mediante el intercambio de partículas elementales llamadas fotones. La nueva formulación cuántica lograda en la década de los años 40 del siglo XX describía la interacción de este fotón portador de fuerza y las otras partículas portadoras de materia.

La electrodinámica cuántica es principalmente una teoría cuántica de campos renormalizada. Su desarrollo fue obra de Sinitiro TomonagaJulian SchwingerRichard Feynman y Freeman Dyson alrededor de los años 1947 a 1949. En la electrodinámica cuántica, la interacción entre partículas viene descrita por un lagrangiano que posee simetría local, concretamente simetría de gauge. Para la electrodinámica cuántica, el campo de gauge donde las partículas interactúan es el campo electromagnético y esas partículas son los fotones.

Matemáticamente, el lagrangiano para la interacción entre fermiones mediante intercambio de fotones viene dado por:

\mathcal{L}=\bar\psi(i\gamma^\mu D_\mu-m)\psi -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}\,

Donde el significado de los términos son:

 \gamma_\mu \,\! son las matrices de Dirac.
\ \psi y \bar\psi son los campos o espinores de Dirac que representan las partículas cargadas eléctricamente.
D_\mu = \partial_\mu+ieA_\mu \,\! es la derivada covariante asociada a la simetría gauge.
\ A_\mu  el operador asociado al potencial vector covariante del campo electromagnético y
F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\! el operador de campo asociado tensor de campo electromagnético.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: